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Abstract�

Multilayer Neural Networks trained with the backpropa�
gation algorithm constitute the best example of a successful
Gradient�Based Learning technique� Given an appropriate
network architecture� Gradient�Based Learning algorithms
can be used to synthesize a complex decision surface that can
classify high�dimensional patterns such as handwritten char�
acters� with minimal preprocessing� This paper reviews var�
ious methods applied to handwritten character recognition
and compares them on a standard handwritten digit recog�
nition task� Convolutional Neural Networks� that are specif�
ically designed to deal with the variability of �D shapes� are
shown to outperform all other techniques�

Real�life document recognition systems are composed
of multiple modules including �eld extraction� segmenta�
tion� recognition� and language modeling� A new learning
paradigm� called Graph Transformer Networks �GTN�� al�
lows such multi�module systems to be trained globally using
Gradient�Based methods so as to minimize an overall per�
formance measure�

Two systems for on�line handwriting recognition are de�
scribed� Experiments demonstrate the advantage of global
training� and the 	exibility of Graph Transformer Networks�

A Graph Transformer Network for reading bank check is
also described� It uses Convolutional Neural Network char�
acter recognizers combined with global training techniques
to provides record accuracy on business and personal checks�
It is deployed commercially and reads several million checks
per day�
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I� Introduction

Over the last several years� machine learning techniques�
particularly when applied to neural networks� have played
an increasingly important role in the design of pattern
recognition systems� In fact� it could be argued that the
availability of learning techniques has been a crucial fac�
tor in the recent success of pattern recognition applica�
tions such as continuous speech recognition and handwrit�
ing recognition�

The main message of this paper is that better pattern
recognition systems can be built by relying more on auto�
matic learning� and less on hand�designed heuristics� This
is made possible by recent progress in machine learning
and computer technology� Using character recognition as
a case study� we show that hand�crafted feature extrac�
tion can be advantageously replaced by carefully designed
learning machines that operate directly on pixel images�
Using document understanding as a case study� we show
that the traditional way of building recognition systems by
manually integrating individually designed modules can be
replaced by a uni�ed and well�principled design paradigm�
called Graph Transformer Networks� that allows training
all the modules to optimize a global performance criterion�

Since the early days of pattern recognition it has been
known that the variability and richness of natural data�
be it speech� glyphs� or other types of patterns� make it
almost impossible to build an accurate recognition system
entirely by hand� Consequently� most pattern recognition
systems are built using a combination of automatic learn�
ing techniques and hand�crafted algorithms� The usual
method of recognizing individual patterns consists in divid�
ing the system into two main modules shown in �gure ��
The �rst module� called the feature extractor� transforms
the input patterns so that they can be represented by low�
dimensional vectors or short strings of symbols that �a� can
be easily matched or compared� and �b� are relatively in�
variant with respect to transformations and distortions of
the input patterns that do not change their nature� The
feature extractor contains most of the prior knowledge and
is rather speci�c to the task� It is also the focus of most of
the design e	ort� because it is often entirely hand�crafted�
The classi�er� on the other hand� is often general�purpose
and trainable� One of the main problems with this ap�
proach is that the recognition accuracy is largely deter�
mined by the ability of the designer to come up with an
appropriate set of features� This turns out to be a daunt�
ing task which� unfortunately� must be redone for each new
problem� A large amount of the pattern recognition liter�
ature is devoted to describing and comparing the relative
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Fig� �� Traditional pattern recognition is performed with two mod�
ules	 a �xed feature extractor� and a trainable classi�er�

merits of di	erent feature sets for particular tasks�

Historically� the need for appropriate feature extractors
was due to the fact that the learning techniques used by
the classi�ers were limited to low�dimensional spaces with
easily separable classes 
��� A combination of three factors
have changed this vision over the last decade� First� the
availability of low�cost machines with fast arithmetic units
allows to rely more on brute�force �numerical
 methods
than on algorithmic re�nements� Second� the availability
of large databases for problems with a large market and
wide interest� such as handwriting recognition� has enabled
designers to rely more on real data and less on hand�crafted
feature extraction to build recognition systems� The third
and very important factor is the availability of powerful ma�
chine learning techniques that can handle high�dimensional
inputs and can generate intricate decision functions when
fed with these large data sets� It can be argued that the
recent progress in the accuracy of speech and handwriting
recognition systems can be attributed in large part to an
increased reliance on learning techniques and large training
data sets� As evidence to this fact� a large proportion of
modern commercial OCR systems use some form of multi�
layer Neural Network trained with back�propagation�

In this study� we consider the tasks of handwritten char�
acter recognition �Sections I and II� and compare the per�
formance of several learning techniques on a benchmark
data set for handwritten digit recognition �Section III��
While more automatic learning is bene�cial� no learning
technique can succeed without a minimal amount of prior
knowledge about the task� In the case of multi�layer neu�
ral networks� a good way to incorporate knowledge is to
tailor its architecture to the task� Convolutional Neu�
ral Networks 
�� introduced in Section II are an exam�
ple of specialized neural network architectures which in�
corporate knowledge about the invariances of �D shapes
by using local connection patterns� and by imposing con�
straints on the weights� A comparison of several methods
for isolated handwritten digit recognition is presented in
section III� To go from the recognition of individual char�
acters to the recognition of words and sentences in docu�
ments� the idea of combining multiple modules trained to
reduce the overall error is introduced in Section IV� Rec�
ognizing variable�length objects such as handwritten words
using multi�module systems is best done if the modules

manipulate directed graphs� This leads to the concept of
trainable Graph Transformer Network �GTN� also intro�
duced in Section IV� Section V describes the now clas�
sical method of heuristic over�segmentation for recogniz�
ing words or other character strings� Discriminative and
non�discriminative gradient�based techniques for training
a recognizer at the word level without requiring manual
segmentation and labeling are presented in Section VI� Sec�
tion VII presents the promising Space�Displacement Neu�
ral Network approach that eliminates the need for seg�
mentation heuristics by scanning a recognizer at all pos�
sible locations on the input� In section VIII� it is shown
that trainable Graph Transformer Networks can be for�
mulated as multiple generalized transductions� based on a
general graph composition algorithm� The connections be�
tween GTNs and Hidden Markov Models� commonly used
in speech recognition is also treated� Section IX describes
a globally trained GTN system for recognizing handwrit�
ing entered in a pen computer� This problem is known as
�on�line
 handwriting recognition� since the machine must
produce immediate feedback as the user writes� The core of
the system is a Convolutional Neural Network� The results
clearly demonstrate the advantages of training a recognizer
at the word level� rather than training it on pre�segmented�
hand�labeled� isolated characters� Section X describes a
complete GTN�based system for reading handwritten and
machine�printed bank checks� The core of the system is the
Convolutional Neural Network called LeNet�� described in
Section II� This system is in commercial use in the NCR
Corporation line of check recognition systems for the bank�
ing industry� It is reading millions of checks per month in
several banks across the United States�

A� Learning from Data

There are several approaches to automatic machine
learning� but one of the most successful approaches� pop�
ularized in recent years by the neural network community�
can be called �numerical
 or gradient�based learning� The
learning machine computes a function Y

p � F �Z

p

� W �
where Z

p is the p �th input pattern� and W represents the
collection of adjustable parameters in the system� In a
pattern recognition setting� the output Y

p may be inter�
preted as the recognized class label of pattern Z

p � or as
scores or probabilities associated with each class� A loss
function E

p � D �D

p

� F �W � Z

p ��� measures the discrep�
ancy between D

p � the �correct
 or desired output for pat�
tern Z

p � and the output produced by the system� The
average loss function E

tr ain

�W � is the average of the er�
rors E

p over a set of labeled examples called the training
set f �Z

�
� D

��� ���� �Z

P

� D

P �g � In the simplest setting� the
learning problem consists in �nding the value of W that
minimizes E

tr ain

�W �� In practice� the performance of the
system on a training set is of little interest� The more rel�
evant measure is the error rate of the system in the �eld�
where it would be used in practice� This performance is
estimated by measuring the accuracy on a set of samples
disjoint from the training set� called the test set� Much
theoretical and experimental work 
��� 
��� 
�� has shown
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that the gap between the expected error rate on the test
set E

test

and the error rate on the training set E

tr ain

de�
creases with the number of training samples approximately
as

E

test

� E

tr ain

� k �h�P �� ���

where P is the number of training samples� h is a measure of
�e	ective capacity
 or complexity of the machine 
��� 
��� �

is a number between �� � and �� �� and k is a constant� This
gap always decreases when the number of training samples
increases� Furthermore� as the capacity h increases� E

tr ain

decreases� Therefore� when increasing the capacity h � there
is a trade�o	 between the decrease of E

tr ain

and the in�
crease of the gap� with an optimal value of the capacity h

that achieves the lowest generalization error E

test

� Most
learning algorithms attempt to minimize E

tr ain

as well as
some estimate of the gap� A formal version of this is called
structural risk minimization 
��� 
��� and is based on de�n�
ing a sequence of learning machines of increasing capacity�
corresponding to a sequence of subsets of the parameter
space such that each subset is a superset of the previous
subset� In practical terms� Structural Risk Minimization
is implemented by minimizing E

tr ain

� � H �W �� where the
function H �W � is called a regularization function� and � is
a constant� H �W � is chosen such that it takes large val�
ues on parameters W that belong to high�capacity subsets
of the parameter space� Minimizing H �W � in e	ect lim�
its the capacity of the accessible subset of the parameter
space� thereby controlling the tradeo	 between minimiz�
ing the training error and minimizing the expected gap
between the training error and test error�

B� Gradient�Based Learning

The general problem of minimizing a function with re�
spect to a set of parameters is at the root of many issues in
computer science� Gradient�Based Learning draws on the
fact that it is generally much easier to minimize a reason�
ably smooth� continuous function than a discrete �combi�
natorial� function� The loss function can be minimized by
estimating the impact of small variations of the parame�
ter values on the loss function� This is measured by the
gradient of the loss function with respect to the param�
eters� E�cient learning algorithms can be devised when
the gradient vector can be computed analytically �as op�
posed to numerically through perturbations�� This is the
basis of numerous gradient�based learning algorithms with
continuous�valued parameters� In the procedures described
in this article� the set of parameters W is a real�valued vec�
tor� with respect to which E �W � is continuous� as well as
di	erentiable almost everywhere� The simplest minimiza�
tion procedure in such a setting is the gradient descent
algorithm where W is iteratively adjusted as follows�

W

k

� W

k �� � �

� E �W �

� W

� ���

In the simplest case� � is a scalar constant� More sophisti�
cated procedures use variable � � or substitute it for a diag�
onal matrix� or substitute it for an estimate of the inverse

Hessian matrix as in Newton or Quasi�Newton methods�
The Conjugate Gradient method 
�� can also be used�
However� Appendix B shows that despite many claims
to the contrary in the literature� the usefulness of these
second�order methods to large learning machines is very
limited�
A popular minimization procedure is the stochastic gra�

dient algorithm� also called the on�line update� It consists
in updating the parameter vector using a noisy� or approx�
imated� version of the average gradient� In the most com�
mon instance of it� W is updated on the basis of a single
sample�

W

k

� W

k �� � �

� E

p

k �W �

� W

���

With this procedure the parameter vector �uctuates
around an average trajectory� but usually converges consid�
erably faster than regular gradient descent and second or�
der methods on large training sets with redundant samples
�such as those encountered in speech or character recogni�
tion�� The reasons for this are explained in Appendix B�
The properties of such algorithms applied to learning have
been studied theoretically since the �����s 
��� 
���� 
����
but practical successes for non�trivial tasks did not occur
until the mid eighties�

C� Gradient Back�Propagation

Gradient�Based Learning procedures have been used
since the late �����s� but they were mostly limited to lin�
ear systems 
��� The surprising usefulness of such sim�
ple gradient descent techniques for complex machine learn�
ing tasks was not widely realized until the following three
events occurred� The �rst event was the realization that�
despite early warnings to the contrary 
���� the presence
of local minima in the loss function does not seem to
be a major problem in practice� This became apparent
when it was noticed that local minima did not seem to
be a major impediment to the success of early non�linear
gradient�based Learning techniques such as Boltzmann ma�
chines 
���� 
���� The second event was the popularization
by Rumelhart� Hinton and Williams 
��� and others of a
simple and e�cient procedure� the back�propagation al�
gorithm� to compute the gradient in a non�linear system
composed of several layers of processing� The third event
was the demonstration that the back�propagation proce�
dure applied to multi�layer neural networks with sigmoidal
units can solve complicated learning tasks� The basic idea
of back�propagation is that gradients can be computed e��
ciently by propagation from the output to the input� This
idea was described in the control theory literature of the
early sixties 
���� but its application to machine learning
was not generally realized then� Interestingly� the early
derivations of back�propagation in the context of neural
network learning did not use gradients� but �virtual tar�
gets
 for units in intermediate layers 
���� 
���� or minimal
disturbance arguments 
���� The Lagrange formalism used
in the control theory literature provides perhaps the best
rigorous method for deriving back�propagation 
���� and for
deriving generalizations of back�propagation to recurrent



PROC� OF THE IEEE� NOVEMBER ���� 	

networks 
���� and networks of heterogeneous modules 
����
A simple derivation for generic multi�layer systems is given
in Section I�E�
The fact that local minima do not seem to be a problem

for multi�layer neural networks is somewhat of a theoretical
mystery� It is conjectured that if the network is oversized
for the task �as is usually the case in practice�� the presence
of �extra dimensions
 in parameter space reduces the risk
of unattainable regions� Back�propagation is by far the
most widely used neural�network learning algorithm� and
probably the most widely used learning algorithm of any
form�

D� Learning in Real Handwriting Recognition Systems

Isolated handwritten character recognition has been ex�
tensively studied in the literature �see 
���� 
��� for reviews��
and was one of the early successful applications of neural
networks 
���� Comparative experiments on recognition of
individual handwritten digits are reported in Section III�
They show that neural networks trained with Gradient�
Based Learning perform better than all other methods
tested here on the same data� The best neural networks�
called Convolutional Networks� are designed to learn to
extract relevant features directly from pixel images �see
Section II��
One of the most di�cult problems in handwriting recog�

nition� however� is not only to recognize individual charac�
ters� but also to separate out characters from their neigh�
bors within the word or sentence� a process known as seg�
mentation� The technique for doing this that has become
the �standard
 is called Heuristic Over�Segmentation� It
consists in generating a large number of potential cuts
between characters using heuristic image processing tech�
niques� and subsequently selecting the best combination of
cuts based on scores given for each candidate character by
the recognizer� In such a model� the accuracy of the sys�
tem depends upon the quality of the cuts generated by the
heuristics� and on the ability of the recognizer to distin�
guish correctly segmented characters from pieces of char�
acters� multiple characters� or otherwise incorrectly seg�
mented characters� Training a recognizer to perform this
task poses a major challenge because of the di�culty in cre�
ating a labeled database of incorrectly segmented charac�
ters� The simplest solution consists in running the images
of character strings through the segmenter� and then man�
ually labeling all the character hypotheses� Unfortunately�
not only is this an extremely tedious and costly task� it is
also di�cult to do the labeling consistently� For example�
should the right half of a cut up � be labeled as a � or as
a non�character� should the right half of a cut up � be
labeled as a ��
The �rst solution� described in Section V consists in

training the system at the level of whole strings of char�
acters� rather than at the character level� The notion of
Gradient�Based Learning can be used for this purpose� The
system is trained to minimize an overall loss function which
measures the probability of an erroneous answer� Section V
explores various ways to ensure that the loss function is dif�

ferentiable� and therefore lends itself to the use of Gradient�
Based Learning methods� Section V introduces the use of
directed acyclic graphs whose arcs carry numerical infor�
mation as a way to represent the alternative hypotheses�
and introduces the idea of GTN�
The second solution described in Section VII is to elim�

inate segmentation altogether� The idea is to sweep the
recognizer over every possible location on the input image�
and to rely on the �character spotting
 property of the rec�
ognizer� i�e� its ability to correctly recognize a well�centered
character in its input �eld� even in the presence of other
characters besides it� while rejecting images containing no
centered characters 
���� 
���� The sequence of recognizer
outputs obtained by sweeping the recognizer over the in�
put is then fed to a Graph Transformer Network that takes
linguistic constraints into account and �nally extracts the
most likely interpretation� This GTN is somewhat similar
to Hidden Markov Models �HMM�� which makes the ap�
proach reminiscent of the classical speech recognition 
����

���� While this technique would be quite expensive in
the general case� the use of Convolutional Neural Networks
makes it particularly attractive because it allows signi�cant
savings in computational cost�

E� Globally Trainable Systems

As stated earlier� most practical pattern recognition sys�
tems are composed of multiple modules� For example� a
document recognition system is composed of a �eld locator�
which extracts regions of interest� a �eld segmenter� which
cuts the input image into images of candidate characters� a
recognizer� which classi�es and scores each candidate char�
acter� and a contextual post�processor� generally based on
a stochastic grammar� which selects the best grammatically
correct answer from the hypotheses generated by the recog�
nizer� In most cases� the information carried from module
to module is best represented as graphs with numerical in�
formation attached to the arcs� For example� the output
of the recognizer module can be represented as an acyclic
graph where each arc contains the label and the score of
a candidate character� and where each path represent a
alternative interpretation of the input string� Typically�
each module is manually optimized� or sometimes trained�
outside of its context� For example� the character recog�
nizer would be trained on labeled images of pre�segmented
characters� Then the complete system is assembled� and
a subset of the parameters of the modules is manually ad�
justed to maximize the overall performance� This last step
is extremely tedious� time�consuming� and almost certainly
suboptimal�
A better alternative would be to somehow train the en�

tire system so as to minimize a global error measure such as
the probability of character misclassi�cations at the docu�
ment level� Ideally� we would want to �nd a good minimum
of this global loss function with respect to all the param�
eters in the system� If the loss function E measuring the
performance can be made di	erentiable with respect to the
system�s tunable parameters W � we can �nd a local min�
imum of E using Gradient�Based Learning� However� at
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�rst glance� it appears that the sheer size and complexity
of the system would make this intractable�
To ensure that the global loss function E

p �Z

p

� W � is dif�
ferentiable� the overall system is built as a feed�forward net�
work of di	erentiable modules� The function implemented
by each module must be continuous and di	erentiable al�
most everywhere with respect to the internal parameters of
the module �e�g� the weights of a Neural Net character rec�
ognizer in the case of a character recognition module�� and
with respect to the module�s inputs� If this is the case� a
simple generalization of the well�known back�propagation
procedure can be used to e�ciently compute the gradients
of the loss function with respect to all the parameters in
the system 
���� For example� let us consider a system
built as a cascade of modules� each of which implements a
function X

n

� F

n

�W

n

� X

n ���� where X

n

is a vector rep�
resenting the output of the module� W

n

is the vector of
tunable parameters in the module �a subset of W �� and
X

n �� is the module�s input vector �as well as the previous
module�s output vector�� The input X � to the �rst module
is the input pattern Z

p � If the partial derivative of E

p with
respect to X

n

is known� then the partial derivatives of E

p

with respect to W

n

and X

n �� can be computed using the
backward recurrence

� E

p

� W

n

�
� F

� W

�W

n

� X

n ���
� E

p

� X

n

� E

p

� X

n ��
�

� F

� X

�W

n

� X

n ���
� E

p

� X

n

���

where � F

� W

�W

n

� X

n ��� is the Jacobian of F with respect to

W evaluated at the point �W

n

� X

n ���� and
� F

� X

�W

n

� X

n ���
is the Jacobian of F with respect to X � The Jacobian of
a vector function is a matrix containing the partial deriva�
tives of all the outputs with respect to all the inputs�
The �rst equation computes some terms of the gradient
of E

p �W �� while the second equation generates a back�
ward recurrence� as in the well�known back�propagation
procedure for neural networks� We can average the gradi�
ents over the training patterns to obtain the full gradient�
It is interesting to note that in many instances there is
no need to explicitly compute the Jacobian matrix� The
above formula uses the product of the Jacobian with a vec�
tor of partial derivatives� and it is often easier to compute
this product directly without computing the Jacobian be�
forehand� In By analogy with ordinary multi�layer neural
networks� all but the last module are called hidden layers
because their outputs are not observable from the outside�
more complex situations than the simple cascade of mod�
ules described above� the partial derivative notation be�
comes somewhat ambiguous and awkward� A completely
rigorous derivation in more general cases can be done using
Lagrange functions 
���� 
���� 
����
Traditional multi�layer neural networks are a special case

of the above where the state information X

n

is represented
with �xed�sized vectors� and where the modules are al�
ternated layers of matrix multiplications �the weights� and
component�wise sigmoid functions �the neurons�� However�
as stated earlier� the state information in complex recogni�

tion system is best represented by graphs with numerical
information attached to the arcs� In this case� each module�
called a Graph Transformer� takes one or more graphs as
input� and produces a graph as output� Networks of such
modules are called Graph Transformer Networks �GTN��
Sections IV� VI and VIII develop the concept of GTNs�
and show that Gradient�Based Learning can be used to
train all the parameters in all the modules so as to mini�
mize a global loss function� It may seem paradoxical that
gradients can be computed when the state information is
represented by essentially discrete objects such as graphs�
but that di�culty can be circumvented� as shown later�

II� Convolutional Neural Networks for

Isolated Character Recognition

The ability of multi�layer networks trained with gradi�
ent descent to learn complex� high�dimensional� non�linear
mappings from large collections of examples makes them
obvious candidates for image recognition tasks� In the tra�
ditional model of pattern recognition� a hand�designed fea�
ture extractor gathers relevant information from the input
and eliminates irrelevant variabilities� A trainable classi�er
then categorizes the resulting feature vectors into classes�
In this scheme� standard� fully�connected multi�layer net�
works can be used as classi�ers� A potentially more inter�
esting scheme is to rely on as much as possible on learning
in the feature extractor itself� In the case of character
recognition� a network could be fed with almost raw in�
puts �e�g� size�normalized images�� While this can be done
with an ordinary fully connected feed�forward network with
some success for tasks such as character recognition� there
are problems�

Firstly� typical images are large� often with several hun�
dred variables �pixels�� A fully�connected �rst layer with�
say one hundred hidden units in the �rst layer� would al�
ready contain several tens of thousands of weights� Such
a large number of parameters increases the capacity of the
system and therefore requires a larger training set� In ad�
dition� the memory requirement to store so many weights
may rule out certain hardware implementations� But� the
main de�ciency of unstructured nets for image or speech
applications is that they have no built�in invariance with
respect to translations� or local distortions of the inputs�
Before being sent to the �xed�size input layer of a neural
net� character images� or other �D or �D signals� must be
approximately size�normalized and centered in the input
�eld� Unfortunately� no such preprocessing can be perfect�
handwriting is often normalized at the word level� which
can cause size� slant� and position variations for individual
characters� This� combined with variability in writing style�
will cause variations in the position of distinctive features
in input objects� In principle� a fully�connected network of
su�cient size could learn to produce outputs that are in�
variant with respect to such variations� However� learning
such a task would probably result in multiple units with
similar weight patterns positioned at various locations in
the input so as to detect distinctive features wherever they
appear on the input� Learning these weight con�gurations
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requires a very large number of training instances to cover
the space of possible variations� In convolutional networks�
described below� shift invariance is automatically obtained
by forcing the replication of weight con�gurations across
space�
Secondly� a de�ciency of fully�connected architectures is

that the topology of the input is entirely ignored� The in�
put variables can be presented in any ��xed� order without
a	ecting the outcome of the training� On the contrary�
images �or time�frequency representations of speech� have
a strong �D local structure� variables �or pixels� that are
spatially or temporally nearby are highly correlated� Local
correlations are the reasons for the well�known advantages
of extracting and combining local features before recogniz�
ing spatial or temporal objects� because con�gurations of
neighboring variables can be classi�ed into a small number
of categories �e�g� edges� corners����� Convolutional Net�
works force the extraction of local features by restricting
the receptive �elds of hidden units to be local�

A� Convolutional Networks

Convolutional Networks combine three architectural
ideas to ensure some degree of shift� scale� and distor�
tion invariance� local receptive �elds� shared weights �or
weight replication�� and spatial or temporal sub�sampling�
A typical convolutional network for recognizing characters�
dubbed LeNet��� is shown in �gure �� The input plane
receives images of characters that are approximately size�
normalized and centered� Each unit in a layer receives in�
puts from a set of units located in a small neighborhood
in the previous layer� The idea of connecting units to local
receptive �elds on the input goes back to the Perceptron in
the early ��s� and was almost simultaneous with Hubel and
Wiesel�s discovery of locally�sensitive� orientation�selective
neurons in the cat�s visual system 
���� Local connections
have been used many times in neural models of visual learn�
ing 
���� 
���� 
���� 
���� 
���� 
��� With local receptive
�elds� neurons can extract elementary visual features such
as oriented edges� end�points� corners �or similar features in
other signals such as speech spectrograms�� These features
are then combined by the subsequent layers in order to de�
tect higher�order features� As stated earlier� distortions or
shifts of the input can cause the position of salient features
to vary� In addition� elementary feature detectors that are
useful on one part of the image are likely to be useful across
the entire image� This knowledge can be applied by forcing
a set of units� whose receptive �elds are located at di	erent
places on the image� to have identical weight vectors 
����

���� 
���� Units in a layer are organized in planes within
which all the units share the same set of weights� The set
of outputs of the units in such a plane is called a feature
map� Units in a feature map are all constrained to per�
form the same operation on di	erent parts of the image�
A complete convolutional layer is composed of several fea�
ture maps �with di	erent weight vectors�� so that multiple
features can be extracted at each location� A concrete ex�
ample of this is the �rst layer of LeNet�� shown in Figure ��
Units in the �rst hidden layer of LeNet�� are organized in �

planes� each of which is a feature map� A unit in a feature
map has �� inputs connected to a � by � area in the input�
called the receptive �eld of the unit� Each unit has �� in�
puts� and therefore �� trainable coe�cients plus a trainable
bias� The receptive �elds of contiguous units in a feature
map are centered on correspondingly contiguous units in
the previous layer� Therefore receptive �elds of neighbor�
ing units overlap� For example� in the �rst hidden layer
of LeNet��� the receptive �elds of horizontally contiguous
units overlap by � columns and � rows� As stated earlier�
all the units in a feature map share the same set of ��
weights and the same bias so they detect the same feature
at all possible locations on the input� The other feature
maps in the layer use di	erent sets of weights and biases�
thereby extracting di	erent types of local features� In the
case of LeNet��� at each input location six di	erent types
of features are extracted by six units in identical locations
in the six feature maps� A sequential implementation of
a feature map would scan the input image with a single
unit that has a local receptive �eld� and store the states
of this unit at corresponding locations in the feature map�
This operation is equivalent to a convolution� followed by
an additive bias and squashing function� hence the name
convolutional network� The kernel of the convolution is the
set of connection weights used by the units in the feature
map� An interesting property of convolutional layers is that
if the input image is shifted� the feature map output will
be shifted by the same amount� but will be left unchanged
otherwise� This property is at the basis of the robustness
of convolutional networks to shifts and distortions of the
input�

Once a feature has been detected� its exact location
becomes less important� Only its approximate position
relative to other features is relevant� For example� once
we know that the input image contains the endpoint of a
roughly horizontal segment in the upper left area� a corner
in the upper right area� and the endpoint of a roughly ver�
tical segment in the lower portion of the image� we can tell
the input image is a �� Not only is the precise position of
each of those features irrelevant for identifying the pattern�
it is potentially harmful because the positions are likely to
vary for di	erent instances of the character� A simple way
to reduce the precision with which the position of distinc�
tive features are encoded in a feature map is to reduce the
spatial resolution of the feature map� This can be achieved
with a so�called sub�sampling layers which performs a local
averaging and a sub�sampling� reducing the resolution of
the feature map� and reducing the sensitivity of the output
to shifts and distortions� The second hidden layer of LeNet�
� is a sub�sampling layer� This layer comprises six feature
maps� one for each feature map in the previous layer� The
receptive �eld of each unit is a � by � area in the previous
layer�s corresponding feature map� Each unit computes the
average of its four inputs� multiplies it by a trainable coef�
�cient� adds a trainable bias� and passes the result through
a sigmoid function� Contiguous units have non�overlapping
contiguous receptive �elds� Consequently� a sub�sampling
layer feature map has half the number of rows and columns
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Fig� �� Architecture of LeNet��� a Convolutional Neural Network� here for digits recognition� Each plane is a feature map� i�e� a set of units
whose weights are constrained to be identical�

as the feature maps in the previous layer� The trainable
coe�cient and bias control the e	ect of the sigmoid non�
linearity� If the coe�cient is small� then the unit operates
in a quasi�linear mode� and the sub�sampling layer merely
blurs the input� If the coe�cient is large� sub�sampling
units can be seen as performing a �noisy OR
 or a �noisy
AND
 function depending on the value of the bias� Succes�
sive layers of convolutions and sub�sampling are typically
alternated� resulting in a �bi�pyramid
� at each layer� the
number of feature maps is increased as the spatial resolu�
tion is decreased� Each unit in the third hidden layer in �g�
ure � may have input connections from several feature maps
in the previous layer� The convolution�sub�sampling com�
bination� inspired by Hubel and Wiesel�s notions of �sim�
ple
 and �complex
 cells� was implemented in Fukushima�s
Neocognitron 
���� though no globally supervised learning
procedure such as back�propagation was available then� A
large degree of invariance to geometric transformations of
the input can be achieved with this progressive reduction
of spatial resolution compensated by a progressive increase
of the richness of the representation �the number of feature
maps��

Since all the weights are learned with back�propagation�
convolutional networks can be seen as synthesizing their
own feature extractor� The weight sharing technique has
the interesting side e	ect of reducing the number of free
parameters� thereby reducing the �capacity
 of the ma�
chine and reducing the gap between test error and training
error 
���� The network in �gure � contains ������� con�
nections� but only ������ trainable free parameters because
of the weight sharing�

Fixed�size Convolutional Networks have been applied
to many applications� among other handwriting recogni�
tion 
���� 
���� machine�printed character recognition 
����
on�line handwriting recognition 
���� and face recogni�
tion 
���� Fixed�size convolutional networks that share
weights along a single temporal dimension are known as
Time�Delay Neural Networks �TDNNs�� TDNNs have been
used in phoneme recognition �without sub�sampling� 
����

���� spoken word recognition �with sub�sampling� 
����

���� on�line recognition of isolated handwritten charac�
ters 
���� and signature veri�cation 
����

B� LeNet��

This section describes in more detail the architecture of
LeNet��� the Convolutional Neural Network used in the
experiments� LeNet�� comprises � layers� not counting the
input� all of which contain trainable parameters �weights��
The input is a ��x�� pixel image� This is signi�cantly larger
than the largest character in the database �at most ��x��
pixels centered in a ��x�� �eld�� The reason is that it is
desirable that potential distinctive features such as stroke
end�points or corner can appear in the center of the recep�
tive �eld of the highest�level feature detectors� In LeNet��
the set of centers of the receptive �elds of the last convolu�
tional layer �C�� see below� form a ��x�� area in the center
of the ��x�� input� The values of the input pixels are nor�
malized so that the background level �white� corresponds
to a value of ���� and the foreground �black� corresponds
to ������ This makes the mean input roughly �� and the
variance roughly � which accelerates learning 
����

In the following� convolutional layers are labeled Cx� sub�
sampling layers are labeled Sx� and fully�connected layers
are labeled Fx� where x is the layer index�

Layer C� is a convolutional layer with � feature maps�
Each unit in each feature map is connected to a �x� neigh�
borhood in the input� The size of the feature maps is ��x��
which prevents connection from the input from falling o	
the boundary� C� contains ��� trainable parameters� and
������� connections�

Layer S� is a sub�sampling layer with � feature maps of
size ��x��� Each unit in each feature map is connected to a
�x� neighborhood in the corresponding feature map in C��
The four inputs to a unit in S� are added� then multiplied
by a trainable coe�cient� and added to a trainable bias�
The result is passed through a sigmoidal function� The
�x� receptive �elds are non�overlapping� therefore feature
maps in S� have half the number of rows and column as
feature maps in C�� Layer S� has �� trainable parameters
and ����� connections�

Layer C� is a convolutional layer with �� feature maps�
Each unit in each feature map is connected to several �x�
neighborhoods at identical locations in a subset of S��s
feature maps� Table I shows the set of S� feature maps
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TABLE I

Ea ch column indica tes which fea ture map in S� are combined

by the units in a p ar ticular fea ture map of C��

combined by each C� feature map� Why not connect ev�
ery S� feature map to every C� feature map� The rea�
son is twofold� First� a non�complete connection scheme
keeps the number of connections within reasonable bounds�
More importantly� it forces a break of symmetry in the net�
work� Di	erent feature maps are forced to extract di	erent
�hopefully complementary� features because they get dif�
ferent sets of inputs� The rationale behind the connection
scheme in table I is the following� The �rst six C� feature
maps take inputs from every contiguous subsets of three
feature maps in S�� The next six take input from every
contiguous subset of four� The next three take input from
some discontinuous subsets of four� Finally the last one
takes input from all S� feature maps� Layer C� has �����
trainable parameters and ������� connections�
Layer S� is a sub�sampling layer with �� feature maps of

size �x�� Each unit in each feature map is connected to a
�x� neighborhood in the corresponding feature map in C��
in a similar way as C� and S�� Layer S� has �� trainable
parameters and ����� connections�
Layer C� is a convolutional layer with ��� feature maps�

Each unit is connected to a �x� neighborhood on all ��
of S��s feature maps� Here� because the size of S� is also
�x�� the size of C��s feature maps is �x�� this amounts
to a full connection between S� and C�� C� is labeled
as a convolutional layer� instead of a fully�connected layer�
because if LeNet�� input were made bigger with everything
else kept constant� the feature map dimension would be
larger than �x�� This process of dynamically increasing the
size of a convolutional network is described in the section
Section VII� Layer C� has ������ trainable connections�
Layer F�� contains �� units �the reason for this number

comes from the design of the output layer� explained be�
low� and is fully connected to C�� It has ������ trainable
parameters�
As in classical neural networks� units in layers up to F�

compute a dot product between their input vector and their
weight vector� to which a bias is added� This weighted sum�
denoted a

i

for unit i � is then passed through a sigmoid
squashing function to produce the state of unit i � denoted
by x

i

�
x

i

� f �a

i

� ���

The squashing function is a scaled hyperbolic tangent�

f �a � � A tanh�S a � ���

where A is the amplitude of the function and S determines
its slope at the origin� The function f is odd� with horizon�
tal asymptotes at �A and � A � The constant A is chosen
to be �� ����� The rationale for this choice of a squashing
function is given in Appendix A�
Finally� the output layer is composed of Euclidean Radial

Basis Function units �RBF�� one for each class� with ��
inputs each� The outputs of each RBF unit y

i

is computed
as follows�

y

i

�
X

j

�x

j

� w

ij

�� � ���

In other words� each output RBF unit computes the Eu�
clidean distance between its input vector and its parameter
vector� The further away is the input from the parameter
vector� the larger is the RBF output� The output of a
particular RBF can be interpreted as a penalty term mea�
suring the �t between the input pattern and a model of the
class associated with the RBF� In probabilistic terms� the
RBF output can be interpreted as the unnormalized nega�
tive log�likelihood of a Gaussian distribution in the space
of con�gurations of layer F�� Given an input pattern� the
loss function should be designed so as to get the con�gu�
ration of F� as close as possible to the parameter vector
of the RBF that corresponds to the pattern�s desired class�
The parameter vectors of these units were chosen by hand
and kept �xed �at least initially�� The components of those
parameters vectors were set to �� or ��� While they could
have been chosen at random with equal probabilities for ��
and ��� or even chosen to form an error correcting code
as suggested by 
���� they were instead designed to repre�
sent a stylized image of the corresponding character class
drawn on a �x�� bitmap �hence the number ���� Such a
representation is not particularly useful for recognizing iso�
lated digits� but it is quite useful for recognizing strings of
characters taken from the full printable ASCII set� The
rationale is that characters that are similar� and therefore
confusable� such as uppercase O� lowercase O� and zero� or
lowercase l� digit �� square brackets� and uppercase I� will
have similar output codes� This is particularly useful if the
system is combined with a linguistic post�processor that
can correct such confusions� Because the codes for confus�
able classes are similar� the output of the corresponding
RBFs for an ambiguous character will be similar� and the
post�processor will be able to pick the appropriate interpre�
tation� Figure � gives the output codes for the full ASCII
set�
Another reason for using such distributed codes� rather

than the more common �� of N
 code �also called place
code� or grand�mother cell code� for the outputs is that
non distributed codes tend to behave badly when the num�
ber of classes is larger than a few dozens� The reason is
that output units in a non�distributed code must be o	
most of the time� This is quite di�cult to achieve with
sigmoid units� Yet another reason is that the classi�ers are
often used to not only recognize characters� but also to re�
ject non�characters� RBFs with distributed codes are more
appropriate for that purpose because unlike sigmoids� they
are activated within a well circumscribed region of their in�
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Fig� �� Initial parameters of the output RBFs for recognizing the
full ASCII set�

put space that non�typical patterns are more likely to fall
outside of�
The parameter vectors of the RBFs play the role of target

vectors for layer F�� It is worth pointing out that the com�
ponents of those vectors are �� or ��� which is well within
the range of the sigmoid of F�� and therefore prevents those
sigmoids from getting saturated� In fact� �� and �� are the
points of maximum curvature of the sigmoids� This forces
the F� units to operate in their maximally non�linear range�
Saturation of the sigmoids must be avoided because it is
known to lead to slow convergence and ill�conditioning of
the loss function�

C� Loss Function

The simplest output loss function that can be used with
the above network is the Maximum Likelihood Estimation
criterion �MLE�� which in our case is equivalent to the Min�
imum Mean Squared Error �MSE�� The criterion for a set
of training samples is simply�

E �W � �
�

P

P

X

p ��

y

D

p �Z

p

� W � ���

where y

D

p is the output of the D

p

�th RBF unit� i�e� the
one that corresponds to the correct class of input pattern
Z

p � While this cost function is appropriate for most cases�
it lacks three important properties� First� if we allow the
parameters of the RBF to adapt� E �W � has a trivial� but
totally unacceptable� solution� In this solution� all the RBF
parameter vectors are equal� and the state of F� is constant
and equal to that parameter vector� In this case the net�
work happily ignores the input� and all the RBF outputs
are equal to zero� This collapsing phenomenon does not
occur if the RBF weights are not allowed to adapt� The
second problem is that there is no competition between
the classes� Such a competition can be obtained by us�
ing a more discriminative training criterion� dubbed the
MAP �maximum a posteriori� criterion� similar to Maxi�
mum Mutual Information criterion sometimes used to train
HMMs 
���� 
���� 
���� It corresponds to maximizing the
posterior probability of the correct class D

p

�or minimiz�
ing the logarithm of the probability of the correct class��
given that the input image can come from one of the classes
or from a background �rubbish
 class label� In terms of

penalties� it means that in addition to pushing down the
penalty of the correct class like the MSE criterion� this
criterion also pulls up the penalties of the incorrect classes�

E �W � �
�
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���
The negative of the second term plays a �competitive
 role�
It is necessarily smaller than �or equal to� the �rst term�
therefore this loss function is positive� The constant j is
positive� and prevents the penalties of classes that are al�
ready very large from being pushed further up� The pos�
terior probability of this rubbish class label would be the
ratio of e

�j and e

�j �
P

i

e

�y

i

�Z

p

�W �� This discrimina�
tive criterion prevents the previously mentioned �collaps�
ing e	ect
 when the RBF parameters are learned because
it keeps the RBF centers apart from each other� In Sec�
tion VI� we present a generalization of this criterion for
systems that learn to classify multiple objects in the input
�e�g�� characters in words or in documents��
Computing the gradient of the loss function with respect

to all the weights in all the layers of the convolutional
network is done with back�propagation� The standard al�
gorithm must be slightly modi�ed to take account of the
weight sharing� An easy way to implement it is to �rst com�
pute the partial derivatives of the loss function with respect
to each connection� as if the network were a conventional
multi�layer network without weight sharing� Then the par�
tial derivatives of all the connections that share a same
parameter are added to form the derivative with respect to
that parameter�
Such a large architecture can be trained very e�ciently�

but doing so requires the use of a few techniques that are
described in the appendix� Section A of the appendix
describes details such as the particular sigmoid used� and
the weight initialization� Section B and C describe the
minimization procedure used� which is a stochastic version
of a diagonal approximation to the Levenberg�Marquardt
procedure�

III� Results and Comparison with Other

Methods

While recognizing individual digits is only one of many
problems involved in designing a practical recognition sys�
tem� it is an excellent benchmark for comparing shape
recognition methods� Though many existing method com�
bine a hand�crafted feature extractor and a trainable clas�
si�er� this study concentrates on adaptive methods that
operate directly on size�normalized images�

A� Database� the Modi�ed NIST set

The database used to train and test the systems de�
scribed in this paper was constructed from the NIST�s Spe�
cial Database � and Special Database � containing binary
images of handwritten digits� NIST originally designated
SD�� as their training set and SD�� as their test set� How�
ever� SD�� is much cleaner and easier to recognize than SD�
�� The reason for this can be found on the fact that SD��
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was collected among Census Bureau employees� while SD��
was collected among high�school students� Drawing sensi�
ble conclusions from learning experiments requires that the
result be independent of the choice of training set and test
among the complete set of samples� Therefore it was nec�
essary to build a new database by mixing NIST�s datasets�
SD�� contains ������ digit images written by ��� dif�

ferent writers� In contrast to SD��� where blocks of data
from each writer appeared in sequence� the data in SD�� is
scrambled� Writer identities for SD�� are available and we
used this information to unscramble the writers� We then
split SD�� in two� characters written by the �rst ��� writers
went into our new training set� The remaining ��� writers
were placed in our test set� Thus we had two sets with
nearly ������ examples each� The new training set was
completed with enough examples from SD��� starting at
pattern � �� to make a full set of ������ training patterns�
Similarly� the new test set was completed with SD�� exam�
ples starting at pattern � ������ to make a full set with
������ test patterns� In the experiments described here� we
only used a subset of ������ test images ������ from SD��
and ����� from SD���� but we used the full ������ training
samples� The resulting database was called the Modi�ed
NIST� or MNIST� dataset�
The original black and white �bilevel� images were size

normalized to �t in a ��x�� pixel box while preserving
their aspect ratio� The resulting images contain grey lev�
els as result of the anti�aliasing �image interpolation� tech�
nique used by the normalization algorithm� Three ver�
sions of the database were used� In the �rst version�
the images were centered in a ��x�� image by comput�
ing the center of mass of the pixels� and translating the
image so as to position this point at the center of the
��x�� �eld� In some instances� this ��x�� �eld was ex�
tended to ��x�� with background pixels� This version of
the database will be referred to as the regular database�
In the second version of the database� the character im�
ages were deslanted and cropped down to ��x�� pixels im�
ages� The deslanting computes the second moments of in�
ertia of the pixels �counting a foreground pixel as � and a
background pixel as ��� and shears the image by horizon�
tally shifting the lines so that the principal axis is verti�
cal� This version of the database will be referred to as the
deslanted database� In the third version of the database�
used in some early experiments� the images were reduced
to ��x�� pixels� The regular database ������� training
examples� ������ test examples size�normalized to ��x���
and centered by center of mass in ��x�� �elds� is avail�
able at http���www�resear ch� at t�c om �  y ann �o cr� mn ist �
Figure � shows examples randomly picked from the test set�

B� Results

Several versions of LeNet�� were trained on the regular
MNIST database� �� iterations through the entire train�
ing data were performed for each session� The values of
the global learning rate 	 �see Equation �� in Appendix C
for a de�nition� was decreased using the following sched�
ule� ������ for the �rst two passes� ������ for the next

Fig� �� Size�normalized examples from the MNIST database�

three� ������ for the next three� ������� for the next ��
and ������� thereafter� Before each iteration� the diagonal
Hessian approximation was reevaluated on ��� samples� as
described in Appendix C and kept �xed during the entire
iteration� The parameter 
 was set to ����� The resulting
e	ective learning rates during the �rst pass varied between
approximately � � ���
 and �� ��� over the set of parame�
ters� The test error rate stabilizes after around �� passes
through the training set at ����!� The error rate on the
training set reaches ����! after �� passes� Many authors
have reported observing the common phenomenon of over�
training when training neural networks or other adaptive
algorithms on various tasks� When over�training occurs�
the training error keeps decreasing over time� but the test
error goes through a minimum and starts increasing after
a certain number of iterations� While this phenomenon is
very common� it was not observed in our case as the learn�
ing curves in �gure � show� A possible reason is that the
learning rate was kept relatively large� The e	ect of this is
that the weights never settle down in the local minimum
but keep oscillating randomly� Because of those �uctua�
tions� the average cost will be lower in a broader minimum�
Therefore� stochastic gradient will have a similar e	ect as
a regularization term that favors broader minima� Broader
minima correspond to solutions with large entropy of the
parameter distribution� which is bene�cial to the general�
ization error�

The in�uence of the training set size was measured by
training the network with ������� ������� and ������ exam�
ples� The resulting training error and test error are shown
in �gure �� It is clear that� even with specialized architec�
tures such as LeNet��� more training data would improve
the accuracy�

To verify this hypothesis� we arti�cially generated more
training examples by randomly distorting the original
training images� The increased training set was composed
of the ������ original patterns plus ������� instances of
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Fig� �� Training and test error of LeNet�� as a function of the num�
ber of passes through the ������ pattern training set �without
distortions�� The average training error is measured on�the��y as
training proceeds� This explains why the training error appears
to be larger than the test error� Convergence is attained after ��
to �� passes through the training set�
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Fig� �� Training and test errors of LeNet�� achieved using training
sets of various sizes� This graph suggests that a larger training
set could improve the performance of LeNet��� The hollow square
show the test error when more training patterns are arti�cially
generated using random distortions� The test patterns are not
distorted�

distorted patterns with randomly picked distortion param�
eters� The distortions were combinations of the follow�
ing planar a�ne transformations� horizontal and verti�
cal translations� scaling� squeezing �simultaneous horizon�
tal compression and vertical elongation� or the reverse��
and horizontal shearing� Figure � shows examples of dis�
torted patterns used for training� When distorted data was
used for training� the test error rate dropped to ���! �from
����! without deformation�� The same training parame�
ters were used as without deformations� The total length of
the training session was left unchanged ��� passes of ������
patterns each�� It is interesting to note that the network
e	ectively sees each individual sample only twice over the
course of these �� passes�

Figure � shows all �� misclassi�ed test examples� some
of those examples are genuinely ambiguous� but several are

Fig� �� Examples of distortions of ten training patterns�
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4�>6 7�>3 9�>4 4�>6 2�>7 9�>7 4�>3 9�>4 9�>4 9�>4
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1�>5 9�>8 6�>3 0�>2 6�>5 9�>5 0�>7 1�>6 4�>9 2�>1

2�>8 8�>5 4�>9 7�>2 7�>2 6�>5 9�>7 6�>1 5�>6 5�>0
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Fig� �� The �� test patterns misclassi�ed by LeNet��� Below each
image is displayed the correct answers �left� and the network an�
swer �right�� These errors are mostly caused either by genuinely
ambiguous patterns� or by digits written in a style that are under�
represented in the training set�

perfectly identi�able by humans� although they are writ�
ten in an under�represented style� This shows that further
improvements are to be expected with more training data�

C� Comparison with Other Classi�ers

For the sake of comparison� a variety of other trainable
classi�ers was trained and tested on the same database� An
early subset of these results was presented in 
���� The error
rates on the test set for the various methods are shown in
�gure ��

C�� Linear Classi�er� and Pairwise Linear Classi�er

Possibly the simplest classi�er that one might consider is
a linear classi�er� Each input pixel value contributes to a
weighted sum for each output unit� The output unit with
the highest sum �including the contribution of a bias con�
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Fig� �� Error rate on the test set ��� for various classi�cation methods� �deslant� indicates that the classi�er was trained and tested on
the deslanted version of the database� �dist� indicates that the training set was augmented with arti�cially distorted examples� ���x���
indicates that the system used the ��x�� pixel images� The uncertainty in the quoted error rates is about �����

stant� indicates the class of the input character� On the
regular data� the error rate is ��!� The network has ����
free parameters� On the deslanted images� the test error
rate is ���! The network has ���� free parameters� The
de�ciencies of the linear classi�er are well documented 
��
and it is included here simply to form a basis of comparison
for more sophisticated classi�ers� Various combinations of
sigmoid units� linear units� gradient descent learning� and
learning by directly solving linear systems gave similar re�
sults�
A simple improvement of the basic linear classi�er was

tested 
���� The idea is to train each unit of a single�layer
network to separate each class from each other class� In our
case this layer comprises �� units labeled ���� �����������
����������� Unit i�j is trained to produce �� on patterns
of class i � �� on patterns of class j � and is not trained on
other patterns� The �nal score for class i is the sum of
the outputs all the units labeled i�x minus the sum of the
output of all the units labeled y �i � for all x and y � The
error rate on the regular test set was ���!�

C�� Baseline Nearest Neighbor Classi�er

Another simple classi�er is a K�nearest neighbor classi�
�er with a Euclidean distance measure between input im�
ages� This classi�er has the advantage that no training
time� and no brain on the part of the designer� are required�

However� the memory requirement and recognition time are
large� the complete ������ twenty by twenty pixel training
images �about �� Megabytes at one byte per pixel� must be
available at run time� Much more compact representations
could be devised with modest increase in error rate� On the
regular test set the error rate was ���!� On the deslanted
data� the error rate was ���!� with k � �� Naturally� a
realistic Euclidean distance nearest�neighbor system would
operate on feature vectors rather than directly on the pix�
els� but since all of the other systems presented in this
study operate directly on the pixels� this result is useful for
a baseline comparison�

C�� Principal Component Analysis �PCA� and Polynomial
Classi�er

Following 
���� 
���� a preprocessing stage was con�
structed which computes the projection of the input pat�
tern on the �� principal components of the set of training
vectors� To compute the principal components� the mean of
each input component was �rst computed and subtracted
from the training vectors� The covariance matrix of the re�
sulting vectors was then computed and diagonalized using
Singular Value Decomposition� The ���dimensional feature
vector was used as the input of a second degree polynomial
classi�er� This classi�er can be seen as a linear classi�er
with ��� inputs� preceded by a module that computes all
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products of pairs of input variables� The error on the reg�
ular test set was ���!�

C�� Radial Basis Function Network

Following 
���� an RBF network was constructed� The
�rst layer was composed of ����� Gaussian RBF units with
��x�� inputs� and the second layer was a simple ���� inputs
� �� outputs linear classi�er� The RBF units were divided
into �� groups of ���� Each group of units was trained
on all the training examples of one of the �� classes using
the adaptive K�means algorithm� The second layer weights
were computed using a regularized pseudo�inverse method�
The error rate on the regular test set was ���!

C�� One�Hidden Layer Fully Connected Multilayer Neural
Network

Another classi�er that we tested was a fully connected
multi�layer neural network with two layers of weights �one
hidden layer� trained with the version of back�propagation
described in Appendix C� Error on the regular test set was
���! for a network with ��� hidden units� and ���! for a
network with ���� hidden units� Using arti�cial distortions
to generate more training data brought only marginal im�
provement� ���! for ��� hidden units� and ���! for ����
hidden units� When deslanted images were used� the test
error jumped down to ���! for a network with ��� hidden
units�
It remains somewhat of a mystery that networks with

such a large number of free parameters manage to achieve
reasonably low testing errors� We conjecture that the dy�
namics of gradient descent learning in multilayer nets has
a �self�regularization
 e	ect� Because the origin of weight
space is a saddle point that is attractive in almost every
direction� the weights invariably shrink during the �rst
few epochs �recent theoretical analysis seem to con�rm
this 
����� Small weights cause the sigmoids to operate
in the quasi�linear region� making the network essentially
equivalent to a low�capacity� single�layer network� As the
learning proceeds� the weights grow� which progressively
increases the e	ective capacity of the network� This seems
to be an almost perfect� if fortuitous� implementation of
Vapnik�s �Structural Risk Minimization
 principle 
��� A
better theoretical understanding of these phenomena� and
more empirical evidence� are de�nitely needed�

C�� Two�Hidden Layer Fully Connected Multilayer Neural
Network

To see the e	ect of the architecture� several two�hidden
layer multilayer neural networks were trained� Theoreti�
cal results have shown that any function can be approxi�
mated by a one�hidden layer neural network 
���� However�
several authors have observed that two�hidden layer archi�
tectures sometimes yield better performance in practical
situations� This phenomenon was also observed here� The
test error rate of a ��x������������� network was ����!�
a much better result than the one�hidden layer network�
obtained using marginally more weights and connections�
Increasing the network size to ��x�������������� yielded

only marginally improved error rates� ����!� Training
with distorted patterns improved the performance some�
what� ����! error for the ��x������������� network� and
����! for the ��x�������������� network�

C�� A Small Convolutional Network� LeNet��

Convolutional Networks are an attempt to solve the
dilemma between small networks that cannot learn
the training set� and large networks that seem over�
parameterized� LeNet�� was an early embodiment of the
Convolutional Network architecture which is included here
for comparison purposes� The images were down�sampled
to ��x�� pixels and centered in the ��x�� input layer� Al�
though about ������� multiply�add steps are required to
evaluate LeNet��� its convolutional nature keeps the num�
ber of free parameters to only about ����� The LeNet�
� architecture was developed using our own version of
the USPS �US Postal Service zip codes� database and its
size was tuned to match the available data 
���� LeNet��
achieved ���! test error� The fact that a network with such
a small number of parameters can attain such a good error
rate is an indication that the architecture is appropriate
for the task�

C�� LeNet��

Experiments with LeNet�� made it clear that a larger
convolutional network was needed to make optimal use of
the large size of the training set� LeNet�� and later LeNet�
� were designed to address this problem� LeNet�� is very
similar to LeNet��� except for the details of the architec�
ture� It contains � �rst�level feature maps� followed by
� subsampling maps connected in pairs to each �rst�layer
feature maps� then �� feature maps� followed by �� sub�
sampling map� followed by a fully connected layer with
��� units� followed by the output layer ��� units�� LeNet��
contains about ������� connections and has about ������
free parameters� Test error was ���!� In a series of ex�
periments� we replaced the last layer of LeNet�� with a
Euclidean Nearest Neighbor classi�er� and with the �local
learning
 method of Bottou and Vapnik 
���� in which a lo�
cal linear classi�er is retrained each time a new test pattern
is shown� Neither of those methods improved the raw error
rate� although they did improve the rejection performance�

C�� Boosted LeNet��

Following theoretical work by R� Schapire 
���� Drucker
et al� 
��� developed the �boosting
 method for combining
multiple classi�ers� Three LeNet��s are combined� the �rst
one is trained the usual way� the second one is trained on
patterns that are �ltered by the �rst net so that the second
machine sees a mix of patterns� ��! of which the �rst net
got right� and ��! of which it got wrong� Finally� the
third net is trained on new patterns on which the �rst and
the second nets disagree� During testing� the outputs of
the three nets are simply added� Because the error rate of
LeNet�� is very low� it was necessary to use the arti�cially
distorted images �as with LeNet��� in order to get enough
samples to train the second and third nets� The test error
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rate was ���!� the best of any of our classi�ers� At �rst
glance� boosting appears to be three times more expensive
as a single net� In fact� when the �rst net produces a
high con�dence answer� the other nets are not called� The
average computational cost is about ���� times that of a
single net�

C��� Tangent Distance Classi�er �TDC�

The Tangent Distance classi�er �TDC� is a nearest�
neighbor method where the distance function is made in�
sensitive to small distortions and translations of the input
image 
���� If we consider an image as a point in a high
dimensional pixel space �where the dimensionality equals
the number of pixels�� then an evolving distortion of a char�
acter traces out a curve in pixel space� Taken together�
all these distortions de�ne a low�dimensional manifold in
pixel space� For small distortions� in the vicinity of the
original image� this manifold can be approximated by a
plane� known as the tangent plane� An excellent measure
of 
closeness
 for character images is the distance between
their tangent planes� where the set of distortions used to
generate the planes includes translations� scaling� skewing�
squeezing� rotation� and line thickness variations� A test
error rate of ���! was achieved using ��x�� pixel images�
Pre�ltering techniques using simple Euclidean distance at
multiple resolutions allowed to reduce the number of nec�
essary Tangent Distance calculations�

C��� Support Vector Machine �SVM�

Polynomial classi�ers are well�studied methods for gen�
erating complex decision surfaces� Unfortunately� they
are impractical for high�dimensional problems� because the
number of product terms is prohibitive� The Support Vec�
tor technique is an extremely economical way of represent�
ing complex surfaces in high�dimensional spaces� including
polynomials and many other types of surfaces 
���
A particularly interesting subset of decision surfaces is

the ones that correspond to hyperplanes that are at a max�
imum distance from the convex hulls of the two classes in
the high�dimensional space of the product terms� Boser�
Guyon� and Vapnik 
��� realized that any polynomial of
degree k in this �maximum margin
 set can be computed
by �rst computing the dot product of the input image with
a subset of the training samples �called the �support vec�
tors
�� elevating the result to the k �th power� and linearly
combining the numbers thereby obtained� Finding the sup�
port vectors and the coe�cients amounts to solving a high�
dimensional quadratic minimization problem with linear
inequality constraints� For the sake of comparison� we in�
clude here the results obtained by Burges and Sch"olkopf
reported in 
���� With a regular SVM� their error rate
on the regular test set was ���!� Cortes and Vapnik had
reported an error rate of ���! with SVM on the same
data using a slightly di	erent technique� The computa�
tional cost of this technique is very high� about �� million
multiply�adds per recognition� Using Sch"olkopf�s Virtual
Support Vectors technique �V�SVM�� ���! error was at�
tained� More recently� Sch"olkopf �personal communication�
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Fig� ��� Number of multiply�accumulate operations for the recogni�
tion of a single character starting with a size�normalized image�

has reached ���! using a modi�ed version of the V�SVM�
Unfortunately� V�SVM is extremely expensive� about twice
as much as regular SVM� To alleviate this problem� Burges
has proposed the Reduced Set Support Vector technique
�RS�SVM�� which attained ���! on the regular test set 
����
with a computational cost of only ������� multiply�adds
per recognition� i�e� only about ��! more expensive than
LeNet���

D� Discussion

A summary of the performance of the classi�ers is shown
in Figures � to ��� Figure � shows the raw error rate of the
classi�ers on the ������ example test set� Boosted LeNet��
performed best� achieving a score of ���!� closely followed
by LeNet�� at ���!�
Figure �� shows the number of patterns in the test set

that must be rejected to attain a ���! error for some of
the methods� Patterns are rejected when the value of cor�
responding output is smaller than a prede�ned threshold�
In many applications� rejection performance is more signif�
icant than raw error rate� The score used to decide upon
the rejection of a pattern was the di	erence between the
scores of the top two classes� Again� Boosted LeNet�� has
the best performance� The enhanced versions of LeNet��
did better than the original LeNet��� even though the raw
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Fig� ��� Memory requirements� measured in number of variables� for
each of the methods� Most of the methods only require one byte
per variable for adequate performance�

accuracies were identical�
Figure �� shows the number of multiply�accumulate op�

erations necessary for the recognition of a single size�
normalized image for each method� Expectedly� neural
networks are much less demanding than memory�based
methods� Convolutional Neural Networks are particu�
larly well suited to hardware implementations because of
their regular structure and their low memory requirements
for the weights� Single chip mixed analog�digital imple�
mentations of LeNet���s predecessors have been shown to
operate at speeds in excess of ���� characters per sec�
ond 
���� However� the rapid progress of mainstream com�
puter technology renders those exotic technologies quickly
obsolete� Cost�e	ective implementations of memory�based
techniques are more elusive� due to their enormous memory
requirements� and computational requirements�
Training time was also measured� K�nearest neighbors

and TDC have essentially zero training time� While the
single�layer net� the pairwise net� and PCA�quadratic net
could be trained in less than an hour� the multilayer net
training times were expectedly much longer� but only re�
quired �� to �� passes through the training set� This
amounts to � to � days of CPU to train LeNet�� on a Sil�
icon Graphics Origin ���� server� using a single ���MHz
R����� processor� It is important to note that while the
training time is somewhat relevant to the designer� it is of
little interest to the �nal user of the system� Given the
choice between an existing technique� and a new technique
that brings marginal accuracy improvements at the price
of considerable training time� any �nal user would chose
the latter�
Figure �� shows the memory requirements� and therefore

the number of free parameters� of the various classi�ers
measured in terms of the number of variables that need
to be stored� Most methods require only about one byte
per variable for adequate performance� However� Nearest�
Neighbor methods may get by with � bits per pixel for stor�

ing the template images� Not surprisingly� neural networks
require much less memory than memory�based methods�
The Overall performance depends on many factors in�

cluding accuracy� running time� and memory requirements�
As computer technology improves� larger�capacity recog�
nizers become feasible� Larger recognizers in turn require
larger training sets� LeNet�� was appropriate to the avail�
able technology in ����� just as LeNet�� is appropriate now�
In ���� a recognizer as complex as LeNet�� would have re�
quired several weeks� training� and more data than was
available� and was therefore not even considered� For quite
a long time� LeNet�� was considered the state of the art�
The local learning classi�er� the optimal margin classi�er�
and the tangent distance classi�er were developed to im�
prove upon LeNet�� # and they succeeded at that� How�
ever� they in turn motivated a search for improved neural
network architectures� This search was guided in part by
estimates of the capacity of various learning machines� de�
rived from measurements of the training and test error as
a function of the number of training examples� We dis�
covered that more capacity was needed� Through a series
of experiments in architecture� combined with an analy�
sis of the characteristics of recognition errors� LeNet�� and
LeNet�� were crafted�
We �nd that boosting gives a substantial improvement in

accuracy� with a relatively modest penalty in memory and
computing expense� Also� distortion models can be used
to increase the e	ective size of a data set without actually
requiring to collect more data�
The Support Vector Machine has excellent accuracy�

which is most remarkable� because unlike the other high
performance classi�ers� it does not include a priori knowl�
edge about the problem� In fact� this classi�er would do
just as well if the image pixels were permuted with a �xed
mapping and lost their pictorial structure� However� reach�
ing levels of performance comparable to the Convolutional
Neural Networks can only be done at considerable expense
in memory and computational requirements� The reduced�
set SVM requirements are within a factor of two of the
Convolutional Networks� and the error rate is very close�
Improvements of those results are expected� as the tech�
nique is relatively new�
When plenty of data is available� many methods can at�

tain respectable accuracy� The neural�net methods run
much faster and require much less space than memory�
based techniques� The neural nets� advantage will become
more striking as training databases continue to increase in
size�

E� Invariance and Noise Resistance

Convolutional networks are particularly well suited for
recognizing or rejecting shapes with widely varying size�
position� and orientation� such as the ones typically pro�
duced by heuristic segmenters in real�world string recogni�
tion systems�
In an experiment like the one described above� the im�

portance of noise resistance and distortion invariance is
not obvious� The situation in most real applications is
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quite di	erent� Characters must generally be segmented
out of their context prior to recognition� Segmentation
algorithms are rarely perfect and often leave extraneous
marks in character images �noise� underlines� neighboring
characters�� or sometimes cut characters too much and pro�
duce incomplete characters� Those images cannot be re�
liably size�normalized and centered� Normalizing incom�
plete characters can be very dangerous� For example� an
enlarged stray mark can look like a genuine �� Therefore
many systems have resorted to normalizing the images at
the level of �elds or words� In our case� the upper and lower
pro�les of entire �elds �amounts in a check� are detected
and used to normalize the image to a �xed height� While
this guarantees that stray marks will not be blown up into
character�looking images� this also creates wide variations
of the size and vertical position of characters after segmen�
tation� Therefore it is preferable to use a recognizer that is
robust to such variations� Figure �� shows several exam�
ples of distorted characters that are correctly recognized by
LeNet��� It is estimated that accurate recognition occurs
for scale variations up to about a factor of �� vertical shift
variations of plus or minus about half the height of the
character� and rotations up to plus or minus �� degrees�
While fully invariant recognition of complex shapes is still
an elusive goal� it seems that Convolutional Networks o	er
a partial answer to the problem of invariance or robustness
with respect to geometrical distortions�

Figure �� includes examples of the robustness of LeNet�
� under extremely noisy conditions� Processing those
images would pose unsurmountable problems of segmen�
tation and feature extraction to many methods� but
LeNet�� seems able to robustly extract salient features
from these cluttered images� The training set used for
the network shown here was the MNIST training set
with salt and pepper noise added� Each pixel was ran�
domly inverted with probability ���� More examples
of LeNet�� in action are available on the Internet at
http���www�resear ch �a tt� co m�� ya nn� oc r �

IV� Multi�Module Systems and Graph

Transformer Networks

The classical back�propagation algorithm� as described
and used in the previous sections� is a simple form of
Gradient�Based Learning� However� it is clear that the
gradient back�propagation algorithm given by Equation �
describes a more general situation than simple multi�layer
feed�forward networks composed of alternated linear trans�
formations and sigmoidal functions� In principle� deriva�
tives can be back�propagated through any arrangement of
functional modules� as long as we can compute the prod�
uct of the Jacobians of those modules by any vector� Why
would we want to train systems composed of multiple het�
erogeneous modules� The answer is that large and complex
trainable systems need to be built out of simple� specialized
modules� The simplest example is LeNet��� which mixes
convolutional layers� sub�sampling layers� fully�connected
layers� and RBF layers� Another less trivial example� de�
scribed in the next two sections� is a system for recognizing
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Fig� ��� A trainable system composed of heterogeneous modules�

words� that can be trained to simultaneously segment and
recognize words� without ever being given the correct seg�
mentation�
Figure �� shows an example of a trainable multi�modular

system� A multi�module system is de�ned by the function
implemented by each of the modules� and by the graph of
interconnection of the modules to each other� The graph
implicitly de�nes a partial order according to which the
modules must be updated in the forward pass� For exam�
ple in Figure ��� module � is �rst updated� then modules �
and � are updated �possibly in parallel�� and �nally mod�
ule �� Modules may or may not have trainable parameters�
Loss functions� which measure the performance of the sys�
tem� are implemented as module �� In the simplest case�
the loss function module receives an external input that
carries the desired output� In this framework� there is no
qualitative di	erence between trainable parameters �W��W�

in the �gure�� external inputs and outputs �Z�D�E �� and
intermediate state variables�X��X��X	�X
�X � ��

A� An Object�Oriented Approach

Object�Oriented programming o	ers a particularly con�
venient way of implementing multi�module systems� Each
module is an instance of a class� Module classes have a �for�
ward propagation
 method �or member function� called
fprop whose arguments are the inputs and outputs of the
module� For example� computing the output of module �
in Figure �� can be done by calling the method fprop on
module � with the arguments X	�X
�X� � Complex mod�
ules can be constructed from simpler modules by simply
de�ning a new class whose slots will contain the member
modules and the intermediate state variables between those
modules� The fprop method for the class simply calls the
fprop methods of the member modules� with the appro�
priate intermediate state variables or external input and
outputs as arguments� Although the algorithms are eas�
ily generalizable to any network of such modules� including
those whose in�uence graph has cycles� we will limit the dis�
cussion to the case of directed acyclic graphs �feed�forward
networks��

Computing derivatives in a multi�module system is just
as simple� A �backward propagation
 method� called
bprop � for each module class can be de�ned for that pur�
pose� The bprop method of a module takes the same ar�
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guments as the fprop method� All the derivatives in the
system can be computed by calling the bprop method on all
the modules in reverse order compared to the forward prop�
agation phase� The state variables are assumed to contain
slots for storing the gradients computed during the back�
ward pass� in addition to storage for the states computed in
the forward pass� The backward pass e	ectively computes
the partial derivatives of the loss E with respect to all the
state variables and all the parameters in the system� There
is an interesting duality property between the forward and
backward functions of certain modules� For example� a
sum of several variables in the forward direction is trans�
formed into a simple fan�out �replication� in the backward
direction� Conversely� a fan�out in the forward direction
is transformed into a sum in the backward direction� The
software environment used to obtain the results described
in this paper� called SN���� uses the above concepts� It is
based on a home�grown object�oriented dialect of Lisp with
a compiler to C�

The fact that derivatives can be computed by propaga�
tion in the reverse graph is easy to understand intuitively�
The best way to justify it theoretically is through the use of
Lagrange functions 
���� 
���� The same formalism can be

used to extend the procedures to networks with recurrent
connections�

B� Special Modules

Neural networks and many other standard pattern recog�
nition techniques can be formulated in terms of multi�
modular systems trained with Gradient�Based Learning�
Commonly used modules include matrix multiplications
and sigmoidal modules� the combination of which can be
used to build conventional neural networks� Other mod�
ules include convolutional layers� sub�sampling layers� RBF
layers� and �softmax
 layers 
���� Loss functions are also
represented as modules whose single output produces the
value of the loss� Commonly used modules have simple
bprop methods� In general� the bprop method of a func�
tion F is a multiplication by the Jacobian of F � Here are
a few commonly used examples� The bprop method of a
fanout �a �Y
 connection� is a sum� and vice versa� The
bprop method of a multiplication by a coe�cient is a mul�
tiplication by the same coe�cient� The bprop method of a
multiplication by a matrix is a multiplication by the trans�
pose of that matrix� The bprop method of an addition with
a constant is the identity�
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Fig� ��� Traditional neural networks� and multi�module systems com�
municate �xed�size vectors between layer� Multi�Layer Graph
Transformer Networks are composed of trainable modules that
operate on and produce graphs whose arcs carry numerical in�
formation�

Interestingly� certain non�di	erentiable modules can be
inserted in a multi�module system without adverse e	ect�
An interesting example of that is the multiplexer module�
It has two �or more� regular inputs� one switching input�
and one output� The module selects one of its inputs� de�
pending upon the �discrete� value of the switching input�
and copies it on its output� While this module is not dif�
ferentiable with respect to the switching input� it is di	er�
entiable with respect to the regular inputs� Therefore the
overall function of a system that includes such modules will
be di	erentiable with respect to its parameters as long as
the switching input does not depend upon the parameters�
For example� the switching input can be an external input�

Another interesting case is the min module� This mod�
ule has two �or more� inputs and one output� The output
of the module is the minimum of the inputs� The func�
tion of this module is di	erentiable everywhere� except on
the switching surface which is a set of measure zero� In�
terestingly� this function is continuous and reasonably reg�
ular� and that is su�cient to ensure the convergence of a
Gradient�Based Learning algorithm�

The object�oriented implementation of the multi�module
idea can easily be extended to include a bbprop method
that propagates Gauss�Newton approximations of the sec�
ond derivatives� This leads to a direct generalization for
modular systems of the second�derivative back�propagation
Equation �� given in the Appendix�

The multiplexer module is a special case of a much
more general situation� described at length in Section VIII�
where the architecture of the system changes dynamically
with the input data� Multiplexer modules can be used to
dynamically rewire �or recon�gure� the architecture of the
system for each new input pattern�

C� Graph Transformer Networks

Multi�module systems are a very �exible tool for build�
ing large trainable system� However� the descriptions in
the previous sections implicitly assumed that the set of
parameters� and the state information communicated be�

tween the modules� are all �xed�size vectors� The limited
�exibility of �xed�size vectors for data representation is a
serious de�ciency for many applications� notably for tasks
that deal with variable length inputs �e�g continuous speech
recognition and handwritten word recognition�� or for tasks
that require encoding relationships between objects or fea�
tures whose number and nature can vary �invariant per�
ception� scene analysis� recognition of composite objects��
An important special case is the recognition of strings of
characters or words�

More generally� �xed�size vectors lack �exibility for tasks
in which the state must encode probability distributions
over sequences of vectors or symbols as is the case in lin�
guistic processing� Such distributions over sequences are
best represented by stochastic grammars� or� in the more
general case� directed graphs in which each arc contains a
vector �stochastic grammars are special cases in which the
vector contains probabilities and symbolic information��
Each path in the graph represents a di	erent sequence of
vectors� Distributions over sequences can be represented
by interpreting elements of the data associated with each
arc as parameters of a probability distribution or simply
as a penalty� Distributions over sequences are particularly
handy for modeling linguistic knowledge in speech or hand�
writing recognition systems� each sequence� i�e�� each path
in the graph� represents an alternative interpretation of the
input� Successive processing modules progressively re�ne
the interpretation� For example� a speech recognition sys�
tem might start with a single sequence of acoustic vectors�
transform it into a lattice of phonemes �distribution over
phoneme sequences�� then into a lattice of words �distribu�
tion over word sequences�� and then into a single sequence
of words representing the best interpretation�

In our work on building large�scale handwriting recog�
nition systems� we have found that these systems could
much more easily and quickly be developed and designed
by viewing the system as a networks of modules that take
one or several graphs as input and produce graphs as out�
put� Such modules are called Graph Transformers� and the
complete systems are called Graph Transformer Networks�
or GTN� Modules in a GTN communicate their states and
gradients in the form of directed graphs whose arcs carry
numerical information �scalars or vectors� 
����

From the statistical point of view� the �xed�size state
vectors of conventional networks can be seen as represent�
ing the means of distributions in state space� In variable�
size networks such as the Space�Displacement Neural Net�
works described in section VII� the states are variable�
length sequences of �xed size vectors� They can be seen
as representing the mean of a probability distribution over
variable�length sequences of �xed�size vectors� In GTNs�
the states are represented as graphs� which can be seen
as representing mixtures of probability distributions over
structured collections �possibly sequences� of vectors �Fig�
ure ����

One of the main points of the next several sections is
to show that Gradient�Based Learning procedures are not
limited to networks of simple modules that communicate



PROC� OF THE IEEE� NOVEMBER ���� ��

through �xed�size vectors� but can be generalized to GTNs�
Gradient back�propagation through a Graph Transformer
takes gradients with respect to the numerical informa�
tion in the output graph� and computes gradients with re�
spect to the numerical information attached to the input
graphs� and with respect to the module�s internal param�
eters� Gradient�Based Learning can be applied as long as
di	erentiable functions are used to produce the numerical
data in the output graph from the numerical data in the
input graph and the functions parameters�
The second point of the next several sections is to show

that the functions implemented by many of the modules
used in typical document processing systems �and other
image recognition systems�� though commonly thought to
be combinatorial in nature� are indeed di	erentiable with
respect to their internal parameters as well as with respect
to their inputs� and are therefore usable as part of a globally
trainable system�
In most of the following� we will purposely avoid making

references to probability theory� All the quantities manip�
ulated are viewed as penalties� or costs� which if necessary
can be transformed into probabilities by taking exponen�
tials and normalizing�

V� Multiple Object Recognition� Heuristic

Over�Segmentation

One of the most di�cult problems of handwriting recog�
nition is to recognize not just isolated characters� but
strings of characters� such as zip codes� check amounts�
or words� Since most recognizers can only deal with one
character at a time� we must �rst segment the string into
individual character images� However� it is almost impos�
sible to devise image analysis techniques that will infallibly
segment naturally written sequences of characters into well
formed characters�
The recent history of automatic speech recognition 
����


��� is here to remind us that training a recognizer by opti�
mizing a global criterion �at the word or sentence level� is
much preferable to merely training it on hand�segmented
phonemes or other units� Several recent works have shown
that the same is true for handwriting recognition 
���� op�
timizing a word�level criterion is preferable to solely train�
ing a recognizer on pre�segmented characters because the
recognizer can learn not only to recognize individual char�
acters� but also to reject mis�segmented characters thereby
minimizing the overall word error�
This section and the next describe in detail a simple ex�

ample of GTN to address the problem of reading strings of
characters� such as words or check amounts� The method
avoids the expensive and unreliable task of hand�truthing
the result of the segmentation often required in more tra�
ditional systems trained on individually labeled character
images�

A� Segmentation Graph

A now classical method for word segmentation and recog�
nition is called Heuristic Over�Segmentation 
���� 
���� Its
main advantages over other approaches to segmentation are

Fig� ��� Building a segmentation graph with Heuristic Over�
Segmentation�

that it avoids making hard decisions about the segmenta�
tion by taking a large number of di	erent segmentations
into consideration� The idea is to use heuristic image pro�
cessing techniques to �nd candidate cuts of the word or
string� and then to use the recognizer to score the alter�
native segmentations thereby generated� The process is
depicted in Figure ��� First� a number of candidate cuts
are generated� Good candidate locations for cuts can be
found by locating minima in the vertical projection pro�le�
or minima of the distance between the upper and lower
contours of the word� Better segmentation heuristics are
described in section X� The cut generation heuristic is de�
signed so as to generate more cuts than necessary� in the
hope that the �correct
 set of cuts will be included� Once
the cuts have been generated� alternative segmentations are
best represented by a graph� called the segmentation graph�
The segmentation graph is a Directed Acyclic Graph �DAG�
with a start node and an end node� Each internal node is
associated with a candidate cut produced by the segmen�
tation algorithm� Each arc between a source node and a
destination node is associated with an image that contains
all the ink between the cut associated with the source node
and the cut associated with the destination node� An arc
is created between two nodes if the segmentor decided that
the ink between the corresponding cuts could form a can�
didate character� Typically� each individual piece of ink
would be associated with an arc� Pairs of successive pieces
of ink would also be included� unless they are separated by
a wide gap� which is a clear indication that they belong
to di	erent characters� Each complete path through the
graph contains each piece of ink once and only once� Each
path corresponds to a di	erent way of associating pieces of
ink together so as to form characters�

B� Recognition Transformer and Viterbi Transformer

A simple GTN to recognize character strings is shown
in Figure ��� It is composed of two graph transformers
called the recognition transformer T

r ec

� and the Viterbi
transformer T

v it

� The goal of the recognition transformer
is to generate a graph� called the interpretation graph or
recognition graph G

int

� that contains all the possible inter�
pretations for all the possible segmentations of the input�
Each path in G

int

represents one possible interpretation of
one particular segmentation of the input� The role of the
Viterbi transformer is to extract the best interpretation
from the interpretation graph�
The recognition transformer T

r ec

takes the segmentation
graph G

seg

as input� and applies the recognizer for single
characters to the images associated with each of the arcs
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Fig� ��� Recognizing a character string with a GTN� For readability�
only the arcs with low penalties are shown�

in the segmentation graph� The interpretation graph G

int

has almost the same structure as the segmentation graph�
except that each arc is replaced by a set of arcs from and
to the same node� In this set of arcs� there is one arc for
each possible class for the image associated with the cor�
responding arc in G

seg

� As shown in Figure ��� to each
arc is attached a class label� and the penalty that the im�
age belongs to this class as produced by the recognizer� If
the segmentor has computed penalties for the candidate
segments� these penalties are combined with the penalties
computed by the character recognizer� to obtain the penal�
ties on the arcs of the interpretation graph� Although com�
bining penalties of di	erent nature seems highly heuristic�
the GTN training procedure will tune the penalties and
take advantage of this combination anyway� Each path in
the interpretation graph corresponds to a possible inter�
pretation of the input word� The penalty of a particular
interpretation for a particular segmentation is given by the
sum of the arc penalties along the corresponding path in
the interpretation graph� Computing the penalty of an in�
terpretation independently of the segmentation requires to
combine the penalties of all the paths with that interpre�
tation� An appropriate rule for combining the penalties of
parallel paths is given in section VI�C�

The Viterbi transformer produces a graph G

v it

with a
single path� This path is the path of least cumulated
penalty in the Interpretation graph� The result of the
recognition can be produced by reading o	 the labels of
the arcs along the graph G

v it

extracted by the Viterbi
transformer� The Viterbi transformer owes its name to the
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Fig� ��� The recognition transformer re�nes each arc of the segmen�
tation arc into a set of arcs in the interpretation graph� one per
character class� with attached penalties and labels�

famous Viterbi algorithm 
���� an application of the prin�
ciple of dynamic programming to �nd the shortest path
in a graph e�ciently� Let c

i

be the penalty associated to
arc i � with source node s

i

� and destination node d

i

�note
that there can be multiple arcs between two nodes�� In
the interpretation graph� arcs also have a label l

i

� The
Viterbi algorithm proceeds as follows� Each node n is as�
sociated with a cumulated Viterbi penalty v

n

� Those cu�
mulated penalties are computed in any order that satis�es
the partial order de�ned by the interpretation graph �which
is directed and acyclic�� The start node is initialized with
the cumulated penalty v start � �� The other nodes cu�
mulated penalties v

n

are computed recursively from the v

values of their parent nodes� through the upstream arcs
U

n

� f arc i with destination d

i

� n g �

v

n

� min
i �U

n

�c

i

� v

s

i

�� ����

Furthermore� the value of i for each node n which minimizes
the right hand side is noted m

n

� the minimizing entering
arc� When the end node is reached we obtain in v end the
total penalty of the path with the smallest total penalty�
We call this penalty the Viterbi penalty� and this sequence
of arcs and nodes the Viterbi path� To obtain the Viterbi
path with nodes n � � � � n

T

and arcs i � � � � i

T ��� we trace back
these nodes and arcs as follows� starting with n

T

� the end
node� and recursively using the minimizing entering arc�
i

t

� m

n

t ��

� and n

t

� s

i

t

until the start node is reached�
The label sequence can then be read o	 the arcs of the
Viterbi path�
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VI� Global Training for Graph Transformer

Networks

The previous section describes the process of recognizing
a string using Heuristic Over�Segmentation� assuming that
the recognizer is trained so as to give low penalties for the
correct class label of correctly segmented characters� high
penalties for erroneous categories of correctly segmented
characters� and high penalties for all categories for badly
formed characters� This section explains how to train the
system at the string level to do the above without requiring
manual labeling of character segments� This training will
be performed with a GTN whose architecture is slightly
di	erent from the recognition architecture described in the
previous section�
In many applications� there is enough a priori knowl�

edge about what is expected from each of the modules in
order to train them separately� For example� with Heuris�
tic Over�Segmentation one could individually label single�
character images and train a character recognizer on them�
but it might be di�cult to obtain an appropriate set of
non�character images to train the model to reject wrongly
segmented candidates� Although separate training is sim�
ple� it requires additional supervision information that is
often lacking or incomplete �the correct segmentation and
the labels of incorrect candidate segments�� Furthermore
it can be shown that separate training is sub�optimal 
����
The following section describes three di	erent gradient�

based methods for training GTN�based handwriting recog�
nizers at the string level� Viterbi training� discriminative
Viterbi training� forward training� and discriminative for�
ward training� The last one is a generalization to graph�
based systems of the MAP criterion introduced in Sec�
tion II�C� Discriminative forward training is somewhat
similar to the so�called Maximum Mutual Information cri�
terion used to train HMM in speech recognition� However�
our rationale di	ers from the classical one� We make no
recourse to a probabilistic interpretation� but show that�
within the Gradient�Based Learning approach� discrimina�
tive training is a simple instance of the pervasive principle
of error correcting learning�
Training methods for graph�based sequence recognition

systems such as HMMs have been extensively studied in
the context of speech recognition 
���� Those methods re�
quire that the system be based on probabilistic generative
models of the data� which provide normalized likelihoods
over the space of possible input sequences� Popular HMM
learning methods� such as the the Baum�Welsh algorithm�
rely on this normalization� The normalization cannot be
preserved when non�generative models such as neural net�
works are integrated into the system� Other techniques�
such as discriminative training methods� must be used in
this case� Several authors have proposed such methods to
train neural network�HMM speech recognizers at the word
or sentence level 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
����

���� 
����
Other globally trainable sequence recognition systems

avoid the di�culties of statistical modeling by not resorting
to graph�based techniques� The best example is Recurrent

Recognition
Transformer

Interpretation Graph

Desired Sequence Path Selector

Best Constrained Path

�

Constrained Viterbi Penalty

Constrained
Interpretation Graph Gc

Gcvit

Ccvit

Gint

Viterbi Transformer

Fig� ��� Viterbi Training GTN Architecture for a character string
recognizer based on Heuristic Over�Segmentation�

Neural Networks �RNN�� Unfortunately� despite early en�
thusiasm� the training of RNNs with gradient�based tech�
niques has proved very di�cult in practice 
����

The GTN techniques presented below simplify and gen�
eralize the global training methods developed for speech
recognition�

A� Viterbi Training

During recognition� we select the path in the Interpre�
tation Graph that has the lowest penalty with the Viterbi
algorithm� Ideally� we would like this path of lowest penalty
to be associated with the correct label sequence as often as
possible� An obvious loss function to minimize is therefore
the average over the training set of the penalty of the path
associated with the correct label sequence that has the low�
est penalty� The goal of training will be to �nd the set of
recognizer parameters �the weights� if the recognizer is a
neural network� that minimize the average penalty of this
�correct
 lowest penalty path� The gradient of this loss
function can be computed by back�propagation through
the GTN architecture shown in �gure ��� This training
architecture is almost identical to the recognition archi�
tecture described in the previous section� except that an
extra graph transformer called a path selector is inserted
between the Interpretation Graph and the Viterbi Trans�
former� This transformer takes the interpretation graph
and the desired label sequence as input� It extracts from
the interpretation graph those paths that contain the cor�
rect �desired� label sequence� Its output graph G c is called
the constrained interpretation graph �also known as forced
alignment in the HMM literature�� and contains all the
paths that correspond to the correct label sequence� The
constrained interpretation graph is then sent to the Viterbi
transformer which produces a graph G cvit with a single
path� This path is the �correct
 path with the lowest
penalty� Finally� a path scorer transformer takes G cvit� and
simply computes its cumulated penalty C cvit by adding up
the penalties along the path� The output of this GTN is
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the loss function for the current pattern�

E vit � C cvit ����

The only label information that is required by the above
system is the sequence of desired character labels� No
knowledge of the correct segmentation is required on the
part of the supervisor� since it chooses among the segmen�
tations in the interpretation graph the one that yields the
lowest penalty�
The process of back�propagating gradients through the

Viterbi training GTN is now described� As explained in
section IV� the gradients must be propagated backwards
through all modules of the GTN� in order to compute gra�
dients in preceding modules and thereafter tune their pa�
rameters� Back�propagating gradients through the path
scorer is quite straightforward� The partial derivatives of
the loss function with respect to the individual penalties on
the constrained Viterbi path G cvit are equal to �� since the
loss function is simply the sum of those penalties� Back�
propagating through the Viterbi Transformer is equally
simple� The partial derivatives of E vit with respect to the
penalties on the arcs of the constrained graph G c are �
for those arcs that appear in the constrained Viterbi path
G cvit� and � for those that do not� Why is it legitimate
to back�propagate through an essentially discrete function
such as the Viterbi Transformer� The answer is that the
Viterbi Transformer is nothing more than a collection of
min functions and adders put together� It was shown in
Section IV that gradients can be back�propagated through
min functions without adverse e	ects� Back�propagation
through the path selector transformer is similar to back�
propagation through the Viterbi transformer� Arcs in G int

that appear in G c have the same gradient as the corre�
sponding arc in G c� i�e� � or �� depending on whether the
arc appear in G cvit� The other arcs� i�e� those that do
not have an alter ego in G c because they do not contain
the right label have a gradient of �� During the forward
propagation through the recognition transformer� one in�
stance of the recognizer for single character was created
for each arc in the segmentation graph� The state of rec�
ognizer instances was stored� Since each arc penalty in
G int is produced by an individual output of a recognizer
instance� we now have a gradient �� or �� for each out�
put of each instance of the recognizer� Recognizer outputs
that have a non zero gradient are part of the correct an�
swer� and will therefore have their value pushed down� The
gradients present on the recognizer outputs can be back�
propagated through each recognizer instance� For each rec�
ognizer instance� we obtain a vector of partial derivatives
of the loss function with respect to the recognizer instance
parameters� All the recognizer instances share the same pa�
rameter vector� since they are merely clones of each other�
therefore the full gradient of the loss function with respect
to the recognizer�s parameter vector is simply the sum of
the gradient vectors produced by each recognizer instance�
Viterbi training� though formulated di	erently� is often use
in HMM�based speech recognition systems 
���� Similar al�
gorithms have been applied to speech recognition systems

that integrate neural networks with time alignment 
����

���� 
��� or hybrid neural�network�HMM systems 
���� 
����

����
While it seems simple and satisfying� this training ar�

chitecture has a �aw that can potentially be fatal� The
problem was already mentioned in Section II�C� If the
recognizer is a simple neural network with sigmoid out�
put units� the minimum of the loss function is attained�
not when the recognizer always gives the right answer� but
when it ignores the input� and sets its output to a constant
vector with small values for all the components� This is
known as the collapse problem� The collapse only occurs if
the recognizer outputs can simultaneously take their min�
imum value� If on the other hand the recognizer�s out�
put layer contains RBF units with �xed parameters� then
there is no such trivial solution� This is due to the fact
that a set of RBF with �xed distinct parameter vectors
cannot simultaneously take their minimum value� In this
case� the complete collapse described above does not occur�
However� this does not totally prevent the occurrence of a
milder collapse because the loss function still has a ��at
spot
 for a trivial solution with constant recognizer out�
put� This �at spot is a saddle point� but it is attractive in
almost all directions and is very di�cult to get out of using
gradient�based minimization procedures� If the parameters
of the RBFs are allowed to adapt� then the collapse prob�
lems reappears because the RBF centers can all converge
to a single vector� and the underlying neural network can
learn to produce that vector� and ignore the input� A dif�
ferent kind of collapse occurs if the width of the RBFs are
also allowed to adapt� The collapse only occurs if a train�
able module such as a neural network feeds the RBFs� The
collapse does not occur in HMM�based speech recognition
systems because they are generative systems that produce
normalized likelihoods for the input data �more on this
later�� Another way to avoid the collapse is to train the
whole system with respect to a discriminative training cri�
terion� such as maximizing the conditional probability of
the correct interpretations �correct sequence of class labels�
given the input image�
Another problem with Viterbi training is that the

penalty of the answer cannot be used reliably as a mea�
sure of con�dence because it does not take low�penalty �or
high�scoring� competing answers into account�

B� Discriminative Viterbi Training

A modi�cation of the training criterion can circumvent
the collapse problem described above and at the same time
produce more reliable con�dence values� The idea is to not
only minimize the cumulated penalty of the lowest penalty
path with the correct interpretation� but also to somehow
increase the penalty of competing and possibly incorrect
paths that have a dangerously low penalty� This type of
criterion is called discriminative� because it plays the good
answers against the bad ones� Discriminative training pro�
cedures can be seen as attempting to build appropriate
separating surfaces between classes rather than to model
individual classes independently of each other� For exam�
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ple� modeling the conditional distribution of the classes
given the input image is more discriminative �focus�sing
more on the classi�cation surface� than having a separate
generative model of the input data associated to each class
�which� with class priors� yields the whole joint distribu�
tion of classes and inputs�� This is because the conditional
approach does not need to assume a particular form for the
distribution of the input data�
One example of discriminative criterion is the di	erence

between the penalty of the Viterbi path in the constrained
graph� and the penalty of the Viterbi path in the �uncon�
strained� interpretation graph� i�e� the di	erence between
the penalty of the best correct path� and the penalty of
the best path �correct or incorrect�� The corresponding
GTN training architecture is shown in �gure ��� The left
side of the diagram is identical to the GTN used for non�
discriminative Viterbi training� This loss function reduces
the risk of collapse because it forces the recognizer to in�
creases the penalty of wrongly recognized objects� Dis�
criminative training can also be seen as another example
of error correction procedure� which tends to minimize the
di	erence between the desired output computed in the left
half of the GTN in �gure �� and the actual output com�
puted in the right half of �gure ���
Let the discriminative Viterbi loss function be denoted

E dvit� and let us call C cvit the penalty of the Viterbi path in
the constrained graph� and C vit the penalty of the Viterbi
path in the unconstrained interpretation graph�

E dvit � C cvit � C vit ����

E dvit is always positive since the constrained graph is a
subset of the paths in the interpretation graph� and the
Viterbi algorithm selects the path with the lowest total
penalty� In the ideal case� the two paths C cvit and C vit

coincide� and E dvit is zero�
Back�propagating gradients through the discriminative

Viterbi GTN adds some �negative
 training to the pre�
viously described non�discriminative training� Figure ��
shows how the gradients are back�propagated� The left
half is identical to the non�discriminative Viterbi training
GTN� therefore the back�propagation is identical� The gra�
dients back�propagated through the right half of the GTN
are multiplied by ��� since C vit contributes to the loss with
a negative sign� Otherwise the process is similar to the left
half� The gradients on arcs of G int get positive contribu�
tions from the left half and negative contributions from the
right half� The two contributions must be added� since the
penalties on G int arcs are sent to the two halves through
a �Y
 connection in the forward pass� Arcs in G int that
appear neither in G vit nor in G cvit have a gradient of zero�
They do not contribute to the cost� Arcs that appear in
both G vit and G cvit also have zero gradient� The �� contri�
bution from the right half cancels the the �� contribution
from the left half� In other words� when an arc is rightfully
part of the answer� there is no gradient� If an arc appears
in G cvit but not in G vit� the gradient is ��� The arc should
have had a lower penalty to make it to G vit� If an arc is
in G vit but not in G cvit� the gradient is ��� The arc had a

low penalty� but should have had a higher penalty since it
is not part of the desired answer�

Variations of this technique have been used for the speech
recognition� Driancourt and Bottou 
��� used a version of
it where the loss function is saturated to a �xed value�
This can be seen as a generalization of the Learning Vector
Quantization � �LVQ��� loss function 
���� Other variations
of this method use not only the Viterbi path� but the K�
best paths� The Discriminative Viterbi algorithm does not
have the �aws of the non�discriminative version� but there
are problems nonetheless� The main problem is that the
criterion does not build a margin between the classes� The
gradient is zero as soon as the penalty of the constrained
Viterbi path is equal to that of the Viterbi path� It would
be desirable to push up the penalties of the wrong paths
when they are dangerously close to the good one� The
following section presents a solution to this problem�

C� Forward Scoring� and Forward Training

While the penalty of the Viterbi path is perfectly appro�
priate for the purpose of recognition� it gives only a partial
picture of the situation� Imagine the lowest penalty paths
corresponding to several di�erent segmentations produced
the same answer �the same label sequence�� Then it could
be argued that the overall penalty for the interpretation
should be smaller than the penalty obtained when only one
path produced that interpretation� because multiple paths
with identical label sequences are more evidence that the
label sequence is correct� Several rules can be used com�
pute the penalty associated to a graph that contains several
parallel paths� We use a combination rule borrowed from
a probabilistic interpretation of the penalties as negative
log posteriors� In a probabilistic framework� the posterior
probability for the interpretation should be the sum of the
posteriors for all the paths that produce that interpreta�
tion� Translated in terms of penalties� the penalty of an
interpretation should be the negative logarithm of the sum
of the negative exponentials of the penalties of the individ�
ual paths� The overall penalty will be smaller than all the
penalties of the individual paths�

Given an interpretation� there is a well known method�
called the forward algorithm for computing the above quan�
tity e�ciently 
���� The penalty computed with this pro�
cedure for a particular interpretation is called the forward
penalty� Consider again the concept of constrained graph�
the subgraph of the interpretation graph which contains
only the paths that are consistent with a particular label
sequence� There is one constrained graph for each pos�
sible label sequence �some may be empty graphs� which
have in�nite penalties�� Given an interpretation� running
the forward algorithm on the corresponding constrained
graph gives the forward penalty for that interpretation�
The forward algorithm proceeds in a way very similar to
the Viterbi algorithm� except that the operation used at
each node to combine the incoming cumulated penalties�
instead of being the min function is the so�called logadd

operation� which can be seen as a �soft
 version of the min
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Note that because of numerical inaccuracies� it is better
to factorize the largest e
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i �corresponding to the smallest
penalty� out of the logarithm�

An interesting analogy can be drawn if we consider that
a graph on which we apply the forward algorithm is equiv�
alent to a neural network on which we run a forward prop�
agation� except that multiplications are replaced by addi�
tions� the additions are replaced by logadds� and there are
no sigmoids�

One way to understand the forward algorithm is to think
about multiplicative scores �e�g�� probabilities� instead of
additive penalties on the arcs� score � exp�� penalty �� In
that case the Viterbi algorithm selects the path with the
largest cumulative score �with scores multiplied along the
path�� whereas the forward score is the sum of the cumula�
tive scores associated to each of the possible paths from the
start to the end node� The forward penalty is always lower
than the cumulated penalty on any of the paths� but if one
path �dominates
 �with a much lower penalty�� its penalty
is almost equal to the forward penalty� The forward algo�
rithm gets its name from the forward pass of the well�known
Baum�Welsh algorithm for training Hidden Markov Mod�
els 
���� Section VIII�E gives more details on the relation
between this work and HMMs�

The advantage of the forward penalty with respect to
the Viterbi penalty is that it takes into account all the
di	erent ways to produce an answer� and not just the one
with the lowest penalty� This is important if there is some
ambiguity in the segmentation� since the combined forward
penalty of two paths C � and C � associated with the same
label sequence may be less than the penalty of a path C �

associated with another label sequence� even though the
penalty of C � might be less than any one of C � or C ��

The Forward training GTN is only a slight modi�ca�
tion of the previously introduced Viterbi training GTN� It
su�ces to turn the Viterbi transformers in Figure �� into
Forward Scorers that take an interpretation graph as input
an produce the forward penalty of that graph on output�
Then the penalties of all the paths that contain the correct
answer are lowered� instead of just that of the best one�

Back�propagating through the forward penalty computa�
tion �the forward transformer� is quite di	erent from back�
propagating through a Viterbi transformer� All the penal�
ties of the input graph have an in�uence on the forward
penalty� but penalties that belong to low�penalty paths
have a stronger in�uence� Computing derivatives with re�
spect to the forward penalties f

n

computed at each n node
of a graph is done by back�propagation through the graph
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Fig� ��� Discriminative Forward Training GTN Architecture
for a character string recognizer based on Heuristic Over�
Segmentation�
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This can be seen as a �soft
 version of the back�propagation
through a Viterbi scorer and transformer� All the arcs in
G c have an in�uence on the loss function� The arcs that
belong to low penalty paths have a larger in�uence� Back�
propagation through the path selector is the same as before�
The derivative with respect to G int arcs that have an alter
ego in G c are simply copied from the corresponding arc in
G c� The derivatives with respect to the other arcs are ��
Several authors have applied the idea of back�

propagating gradients through a forward scorer to train
speech recognition systems� including Bridle and his � �net
model 
��� and Ha	ner and his �� �TDNN model 
���� but
these authors recommended discriminative training as de�
scribed in the next section�

D� Discriminative Forward Training

The information contained in the forward penalty can be
used in another discriminative training criterion which we
will call the discriminative forward criterion� This criterion
corresponds to maximization of the posterior probability of
choosing the paths associated with the correct interpreta�
tion� This posterior probability is de�ned as the exponen�
tial of the minus the constrained forward penalty� normal�
ized by the exponential of minus the unconstrained forward
penalty� Note that the forward penalty of the constrained
graph is always larger or equal to the forward penalty of the
unconstrained interpretation graph� Ideally� we would like
the forward penalty of the constrained graph to be equal to
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the forward penalty of the complete interpretation graph�
Equality between those two quantities is achieved when the
combined penalties of the paths with the correct label se�
quence is negligibly small compared to the penalties of all
the other paths� or that the posterior probability associ�
ated to the paths with the correct interpretation is almost
�� which is precisely what we want� The corresponding
GTN training architecture is shown in �gure ���
Let the di	erence be denoted E dforw� and let us call

C cforw the forward penalty of the constrained graph� and
C forw the forward penalty of the complete interpretation
graph�

E dforw � C cforw � C forw ����

E dforw is always positive since the constrained graph is a
subset of the paths in the interpretation graph� and the
forward penalty of a graph is always larger than the for�
ward penalty of a subgraph of this graph� In the ideal case�
the penalties of incorrect paths are in�nitely large� there�
fore the two penalties coincide and E dforw is zero� Readers
familiar with the Boltzmann machine connectionist model
might recognize the constrained and unconstrained graphs
as analogous to the �clamped
 �constrained by the ob�
served values of the output variable� and �free
 �uncon�
strained� phases of the Boltzmann machine algorithm 
����
Back�propagating derivatives through the discriminative

Forward GTN distributes gradients more evenly than in the
Viterbi case� Derivatives are back�propagated through the
left half of the the GTN in Figure �� down to the interpre�
tation graph� Derivatives are negated and back�propagated
through the right�half� and the result for each arc is added
to the contribution from the left half� Each arc in G int

now has a derivative� Arcs that are part of a correct path
have a positive derivative� This derivative is very large if
an incorrect path has a lower penalty than all the correct
paths� Similarly� the derivatives with respect to arcs that
are part of a low�penalty incorrect path have a large nega�
tive derivative� On the other hand� if the penalty of a path
associated with the correct interpretation is much smaller
than all other paths� the loss function is very close to �
and almost no gradient is back�propagated� The training
therefore concentrates on examples of images which yield a
classi�cation error� and furthermore� it concentrates on the
pieces of the image which cause that error� Discriminative
forward training is an elegant and e�cient way of solving
the infamous credit assignment problem for learning ma�
chines that manipulate �dynamic
 data structures such as
graphs� More generally� the same idea can be used in all
situations where a learning machine must choose between
discrete alternative interpretations�
As previously� the derivatives on the interpretation graph

penalties can then be back�propagated into the character
recognizer instances� Back�propagation through the char�
acter recognizer gives derivatives on its parameters� All the
gradient contributions for the di	erent candidate segments
are added up to obtain the total gradient associated to one
pair �input image� correct label sequence�� that is� one ex�
ample in the training set� A step of stochastic gradient
descent can then be applied to update the parameters�

E� Remarks on Discriminative Training

In the above discussion� the global training criterion
was given a probabilistic interpretation� but the individ�
ual penalties on the arcs of the graphs were not� There are
good reasons for that� For example� if some penalties are
associated to the di	erent class labels� they would ��� have
to sum to � �class posteriors�� or ��� integrate to � over the
input domain �likelihoods��
Let us �rst discuss the �rst case �class posteriors normal�

ization�� This local normalization of penalties may elimi�
nate information that is important for locally rejecting all
the classes 
���� e�g�� when a piece of image does not cor�
respond to a valid character class� because some of the
segmentation candidates may be wrong� Although an ex�
plicit �garbage class
 can be introduced in a probabilistic
framework to address that question� some problems remain
because it is di�cult to characterize such a class probabilis�
tically and to train a system in this way �it would require
a density model of unseen or unlabeled samples��
The probabilistic interpretation of individual variables

plays an important role in the Baum�Welsh algorithm
in combination with the Expectation�Maximization proce�
dure� Unfortunately� those methods cannot be applied to
discriminative training criteria� and one is reduced to us�
ing gradient�based methods� Enforcing the normalization
of the probabilistic quantities while performing gradient�
based learning is complex� ine�cient� time consuming� and
creates ill�conditioning of the loss�function�
Following 
���� we therefore prefer to postpone normal�

ization as far as possible �in fact� until the �nal decision
stage of the system�� Without normalization� the quanti�
ties manipulated in the system do not have a direct prob�
abilistic interpretation�
Let us now discuss the second case �using a generative

model of the input�� Generative models build the boundary
indirectly� by �rst building an independent density model
for each class� and then performing classi�cation decisions
on the basis of these models� This is not a discriminative
approach in that it does not focus on the ultimate goal of
learning� which in this case is to learn the classi�cation de�
cision surface� Theoretical arguments 
��� 
�� suggest that
estimating input densities when the real goal is to obtain
a discriminant function for classi�cation is a suboptimal
strategy� In theory� the problem of estimating densities in
high�dimensional spaces is much more ill�posed than �nd�
ing decision boundaries�
Even though the internal variables of the system do not

have a direct probabilistic interpretation� the overall sys�
tem can still be viewed as producing posterior probabilities
for the classes� In fact� assuming that a particular label se�
quence is given as the �desired sequence
 to the GTN in
�gure ��� the exponential of minus E dforw can be inter�
preted as an estimate of the posterior probability of that
label sequence given the input� The sum of those posteriors
for all the possible label sequences is �� Another approach
would consists of directly minimizing an approximation of
the number of misclassi�cations 
��� 
���� We prefer to use
the discriminative forward loss function because it causes
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"U"

Recognizer

Fig� ��� Explicit segmentation can be avoided by sweeping a recog�
nizer at every possible location in the input �eld�

less numerical problems during the optimization� We will
see in Section X�C that this is a good way to obtain scores
on which to base a rejection strategy� The important point
being made here is that one is free to choose any param�
eterization deemed appropriate for a classi�cation model�
The fact that a particular parameterization uses internal
variables with no clear probabilistic interpretation does not
make the model any less legitimate than models that ma�
nipulate normalized quantities�
An important advantage of global and discriminative

training is that learning focuses on the most important
errors� and the system learns to integrate the ambigui�
ties from the segmentation algorithm with the ambigui�
ties of the character recognizer� In Section IX we present
experimental results with an on�line handwriting recogni�
tion system that con�rm the advantages of using global
training versus separate training� Experiments in speech
recognition with hybrids of neural networks and HMMs
also showed marked improvements brought by global train�
ing 
���� 
���� 
���� 
����

VII� Multiple Object Recognition� Space

Displacement Neural Network

�
There is a simple alternative to explicitly segmenting im�

ages of character strings using heuristics� The idea is to
sweep a recognizer at all possible locations across a nor�
malized image of the entire word or string as shown in
Figure ��� With this technique� no segmentation heuris�
tics are required since the system essentially examines all
the possible segmentations of the input� However� there
are problems with this approach� First� the method is in
general quite expensive� The recognizer must be applied
at every possible location on the input� or at least at a
large enough subset of locations so that misalignments of
characters in the �eld of view of the recognizers are small
enough to have no e	ect on the error rate� Second� when
the recognizer is centered on a character to be recognized�
the neighbors of the center character will be present in the
�eld of view of the recognizer� possibly touching the cen�
ter character� Therefore the recognizer must be able to
correctly recognize the character in the center of its input
�eld� even if neighboring characters are very close to� or
touching the central character� Third� a word or charac�
ter string cannot be perfectly size normalized� Individual

$

Fig� ��� A Space Displacement Neural Network is a convolutional
network that has been replicated over a wide input �eld�

characters within a string may have widely varying sizes
and baseline positions� Therefore the recognizer must be
very robust to shifts and size variations�

These three problems are elegantly circumvented if a
convolutional network is replicated over the input �eld�
First of all� as shown in section III� convolutional neu�
ral networks are very robust to shifts and scale varia�
tions of the input image� as well as to noise and extra�
neous marks in the input� These properties take care of
the latter two problems mentioned in the previous para�
graph� Second� convolutional networks provide a drastic
saving in computational requirement when replicated over
large input �elds� A replicated convolutional network� also
called a Space Displacement Neural Network or SDNN 
����
is shown in Figure ��� While scanning a recognizer can
be prohibitively expensive in general� convolutional net�
works can be scanned or replicated very e�ciently over
large� variable�size input �elds� Consider one instance of
a convolutional net and its alter ego at a nearby location�
Because of the convolutional nature of the network� units
in the two instances that look at identical locations on the
input have identical outputs� therefore their states do not
need to be computed twice� Only a thin �slice
 of new
states that are not shared by the two network instances
needs to be recomputed� When all the slices are put to�
gether� the result is simply a larger convolutional network
whose structure is identical to the original network� except
that the feature maps are larger in the horizontal dimen�
sion� In other words� replicating a convolutional network
can be done simply by increasing the size of the �elds over
which the convolutions are performed� and by replicating
the output layer accordingly� The output layer e	ectively
becomes a convolutional layer� An output whose receptive
�eld is centered on an elementary object will produce the
class of this object� while an in�between output may indi�
cate no character or contain rubbish� The outputs can be
interpreted as evidences for the presence of objects at all
possible positions in the input �eld�

The SDNN architecture seems particularly attractive for
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recognizing cursive handwriting where no reliable segmen�
tation heuristic exists� Although the idea of SDNN is quite
old� and very attractive by its simplicity� it has not gener�
ated wide interest until recently because� as stated above�
it puts enormous demands on the recognizer 
���� 
���� In
speech recognition� where the recognizer is at least one
order of magnitude smaller� replicated convolutional net�
works are easier to implement� for instance in Ha	ner�s
Multi�State TDNN model 
���� 
����

A� Interpreting the Output of an SDNN with a GTN

The output of an SDNN is a sequence of vectors which
encode the likelihoods� penalties� or scores of �nding char�
acter of a particular class label at the corresponding lo�
cation in the input� A post�processor is required to pull
out the best possible label sequence from this vector se�
quence� An example of SDNN output is shown in Fig�
ure ��� Very often� individual characters are spotted by
several neighboring instances of the recognizer� a conse�
quence of the robustness of the recognizer to horizontal
translations� Also quite often� characters are erroneously
detected by recognizer instances that see only a piece of
a character� For example a recognizer instance that only
sees the right third of a ��
 might output the label �� How
can we eliminate those extraneous characters from the out�
put sequence and pull�out the best interpretation� This
can be done using a new type of Graph Transformer with
two input graphs as shown in Figure ��� The sequence of
vectors produced by the SDNN is �rst coded into a linear
graph with multiple arcs between pairs of successive nodes�
Each arc between a particular pair of nodes contains the
label of one of the possible categories� together with the
penalty produced by the SDNN for that class label at that
location� This graph is called the SDNN Output Graph�
The second input graph to the transformer is a grammar
transducer� more speci�cally a �nite�state transducer 
����
that encodes the relationship between input strings of class
labels and corresponding output strings of recognized char�
acters�The transducer is a weighted �nite state machine �a
graph� where each arc contains a pair of labels and possibly
a penalty� Like a �nite�state machine� a transducer is in a
state and follows an arc to a new state when an observed
input symbol matches the �rst symbol in the symbol pair
attached to the arc� At this point the transducer emits the
second symbol in the pair together with a penalty that com�
bines the penalty of the input symbol and the penalty of
the arc� A transducer therefore transforms a weighted sym�
bol sequence into another weighted symbol sequence� The
graph transformer shown in �gure �� performs a composi�
tion between the recognition graph and the grammar trans�
ducer� This operation takes every possible sequence corre�
sponding to every possible path in the recognition graph
and matches them with the paths in the grammar trans�
ducer� The composition produces the interpretation graph�
which contains a path for each corresponding output label
sequence� This composition operation may seem combina�
torially intractable� but it turns out there exists an e�cient
algorithm for it described in more details in Section VIII�

Viterbi Transformer

SDNN
Transformer

Compose

Viterbi Answer

Character
Model
Transducer

S....c.....r......i....p....t
s....e.....n.....e.j...o.T
5......a...i...u......p.....f

SDNN Output

Interpretation Graph

Viterbi Graph

Fig� ��� A Graph Transformer pulls out the best interpretation from
the output of the SDNN�
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Fig� ��� An example of multiple character recognition with SDNN�
With SDNN� no explicit segmentation is performed�

B� Experiments with SDNN

In a series of experiments� LeNet�� was trained with the
goal of being replicated so as to recognize multiple char�
acters without segmentations� The data was generated
from the previously described Modi�ed NIST set as fol�
lows� Training images were composed of a central char�
acter� �anked by two side characters picked at random in
the training set� The separation between the bounding
boxes of the characters were chosen at random between ��
and � pixels� In other instances� no central character was
present� in which case the desired output of the network
was the blank space class� In addition� training images
were degraded with ��! salt and pepper noise �random
pixel inversions��

Figures �� and �� show a few examples of success�
ful recognitions of multiple characters by the LeNet��
SDNN� Standard techniques based on Heuristic Over�
Segmentation would fail miserably on many of those ex�
amples� As can be seen on these examples� the network
exhibits striking invariance and noise resistance properties�
While some authors have argued that invariance requires
more sophisticated models than feed�forward neural net�
works 
���� LeNet�� exhibits these properties to a large ex�
tent�
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Fig� ��� An SDNN applied to a noisy image of digit string� The digits shown in the SDNN output represent the winning class labels� with
a lighter grey level for high�penalty answers�

Similarly� it has been suggested that accurate recognition
of multiple overlapping objects require explicit mechanisms
that would solve the so�called feature binding problem 
����
As can be seen on Figures �� and ��� the network is able to
tell the characters apart� even when they are closely inter�
twined� a task that would be impossible to achieve with the
more classical Heuristic Over�Segmentation technique� The
SDNN is also able to correctly group disconnected pieces
of ink that form characters� Good examples of that are
shown in the upper half of �gure ��� In the top left ex�
ample� the � and the � are more connected to each other
than they are connected with themselves� yet the system
correctly identi�es the � and the � as separate objects� The
top right example is interesting for several reasons� First
the system correctly identi�es the three individual ones�
Second� the left half and right half of disconnected � are
correctly grouped� even though no geometrical information
could decide to associate the left half to the vertical bar on
its left or on its right� The right half of the � does cause
the appearance of an erroneous � on the SDNN output�
but this one is removed by the character model transducer
which prevents characters from appearing on contiguous
outputs�

Another important advantage of SDNN is the ease with

which they can be implemented on parallel hardware� Spe�
cialized analog�digital chips have been designed and used
in character recognition� and in image preprocessing appli�
cations 
���� However the rapid progress of conventional
processor technology with reduced�precision vector arith�
metic instructions �such as Intel�s MMX� make the success
of specialized hardware hypothetical at best�

Short video clips of the LeNet�� SDNN can be viewed at
http���www�resea rch �a tt �co m� �ya nn �oc r �

C� Global Training of SDNN

In the above experiments� the string image were arti��
cially generated from individual character� The advantage
is that we know in advance the location and the label of
the important character� With real training data� the cor�
rect sequence of labels for a string is generally available�
but the precise locations of each corresponding character
in the input image are unknown�

In the experiments described in the previous section� the
best interpretation was extracted from the SDNN output
using a very simple graph transformer� Global training of
an SDNN can be performed by back�propagating gradients
through such graph transformers arranged in architectures
similar to the ones described in section VI�




































